Chimera states are spatiotemporal patterns in which coherent and incoherent dynamics coexist simultaneously. These patterns were observed in both locally and nonlocally coupled oscillators. We study the existence of chimera states in networks of coupled Rössler oscillators. The Rössler oscillator can exhibit periodic or chaotic behavior depending on the control parameters. In this work, we show that the existence of coherent, incoherent, and chimera states depends not only on the coupling strength, but also on the initial state of the network. The initial states can belong to complex basins of attraction that are not homogeneously distributed. Due to this fact, we characterize the basins by means of the uncertainty exponent and basin stability. In our simulations, we find basin boundaries with smooth, fractal, and riddled structures.

1.
M. S.
Baptista
,
T. P.
Silva
,
J. C.
Sartorelli
, and
I. L.
Caldas
, “
Phase synchronization in the perturbed Chua circuit
,”
Phys. Rev. E
67
,
056212
(
2003
).
2.
N.
Barkai
and
S.
Leibler
, “
Biological rhythms: Circadian clocks limited by noise
,”
Nature
403
,
267
268
(
2000
).
3.
V.
Petrov
,
V.
Gáspár
,
J.
Masere
, and
K.
Showalter
, “
Controlling in the Belousov-Zhabotinsky reaction
,”
Nature
361
,
240
243
(
1993
).
4.
Y.
Zou
,
R. V.
Donner
,
M.
Wickramasinghe
,
I. Z.
Kiss
,
M.
Small
, and
J.
Kurths
, “
Phase coherence and attractor geometry of chaotic electrochemical oscillators
,”
Chaos
22
,
033130
(
2012
).
5.
Lj.
Kocarev
,
K. S.
Halle
,
K.
Eckert
,
L. O.
Chua
, and
U.
Parlitz
, “
Experimental demonstration of secure communications via chaotic synchronization
,”
Int. J. Bifurcation Chaos
02
,
709
713
(
1992
).
6.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
7.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
(
1996
).
8.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization of chaotic systems
,”
Chaos
25
,
097611
(
2015
).
9.
J. H.
García-Lopez
,
R.
Jaimes-Reátegui
,
A. N.
Pisarchik
,
A.
Murguía-Hernandez
,
C.
Medina-Gutiérrez
,
R.
Valdivia-Hernadez
, and
E.
Villafana-Rauda
, “
Novel communication scheme based on chaotic Rössler circuits
,”
J. Phys. Conf. Ser.
23
,
276
284
(
2005
).
10.
Q. H.
Alsafasfeh
and
M. S.
Al-Arni
, “
A new chaotic behavior from Lorenz and Rossler systems and its electronic circuit implementation
,”
Circuits Syst.
2
,
101
105
(
2011
).
11.
C.
Gu
,
G.
St-Yves
, and
J.
Davidsen
, “
Spiral wave chimeras in complex oscillatory and chaotic systems
,”
Phys. Rev. Lett.
111
,
134101
(
2013
).
12.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
PNAS
110
,
2005
2010
(
2013
).
13.
R.
Carareto
,
M. S.
Baptista
, and
C.
Grebogi
, “
Natural synchronization in power-grids with anti-correlated units
,”
Commun. Nonlinear Sci.
18
,
1035
1046
(
2013
).
14.
K. M.
Stiefel
and
G. B.
Ermentrout
, “
Neuron as oscillators
,”
J. Neurophysiol.
116
,
2950
2960
(
2016
).
15.
P. S.
Skardal
and
A.
Arenas
, “
Control of coupled oscillator networks with application to microgrid technologies
,”
Sci. Adv.
1
,
e1500339
(
2015
).
16.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
4196
(
1997
).
17.
K.
Umberger
,
C.
Grebogi
,
E.
Ott
, and
B.
Afeyan
, “
Spatio-temporal dynamics in a dispersively coupled chain of nonlinear oscillators
,”
Phys. Rev. A
39
,
4835
(
1989
).
18.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex. Syst.
5
,
380
385
(
2002
).
19.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
20.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
PNAS
110
,
10563
10567
(
2013
).
21.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
, “
Experimental observation of chimera and cluster states in a minimal globally coupled network
,”
Chaos
26
,
094801
(
2016
).
22.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
, “
Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators
,”
Chaos
26
,
094826
(
2016
).
23.
M. S.
Santos
,
J. D.
Szezech
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Chimera-like states in a neuronal network model of the cat brain
,”
Chaos, Solitons Fractals
101
,
86
91
(
2017
).
24.
M. S.
Santos
,
P. R.
Protachevicz
,
K. C.
Iarosz
,
I. L.
Caldas
,
R. L.
Viana
,
F. S.
Borges
,
H.-P.
Ren
,
J. D.
Szezech
, Jr.,
A. M.
Batista
, and
C.
Grebogi
, “
Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network
,”
Chaos
29
,
043106
(
2019
).
25.
C. A. S.
Batista
and
R. L.
Viana
, “
Quantifying coherence of chimera states in coupled chaotic systems
,”
Physica A
526
,
120869
(
2019
).
26.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
, “
Loss of coherence in dynamical networks: Spatial chaos and chimera states
,”
Phys. Rev. Lett.
106
,
234102
(
2011
).
27.
I.
Omelchenko
,
B.
Riemenschneider
,
P.
Hövel
,
Y.
Maistrenko
, and
E.
Schöll
, “
Transition from spatial coherence to incoherence in coupled chaotic systems
,”
Phys. Rev. E
85
,
026212
(
2012
).
28.
V. K.
Chandrasekar
,
R.
Gopal
,
A.
Venkatesan
, and
M.
Lakshmanan
, “
Mechanism for intensity-induced chimera states in globally coupled oscillators
,”
Phys. Rev. E
90
,
062913
(
2014
).
29.
P.
Chandran
,
R. P.
Gopal
,
V. K.
Chandrasekar
, and
N.
Athavan
, “
Chimera-like states induced by additional dynamic nonlocal wirings
,”
Chaos
30
,
063106
(
2020
).
30.
C.
Meena
,
K.
Murali
, and
S.
Sinha
, “
Chimera states in star networks
,”
Int. J. Bifurcation Chaos
26
,
1630023
(
2016
).
31.
S.
Ghosh
and
S.
Jalan
, “
Engineering chimera patterns in networks using heterogeneous delays
,”
Chaos
28
,
071103
(
2018
).
32.
Z.
Faghani
,
Z.
Arab
,
F.
Parastesh
,
S.
Jafari
,
M.
Perc
, and
M.
Slavinec
, “
Effects of different initial conditions on the emergence of chimera states
,”
Chaos, Solitons Fractals
114
,
306
311
(
2018
).
33.
E. A.
Martens
,
M. J.
Panaggio
, and
D. M.
Abrams
, “
Basins of attraction for chimera states
,”
New J. Phys.
18
,
022002
(
2016
).
34.
S.
Rakshit
,
B. K.
Bera
,
M.
Perc
, and
D.
Ghosh
, “
Basin stability for chimera states
,”
Sci. Rep.
7
,
2412
(
2017
).
35.
V.
Santos
,
J. D.
Szezech
, Jr.,
A. M.
Batista
,
K. C.
Iarosz
,
M. S.
Baptista
,
H. P.
Ren
,
C.
Grebogi
,
R. L.
Viana
,
I. L.
Caldas
,
Y. L.
Maistrenko
, and
J.
Kurths
, “
Riddling: Chimera’s dilemma
,”
Chaos
28
,
081105
(
2018
).
36.
J.
Aguirre
,
R. L.
Viana
, and
M. A. F.
Sanjuan
, “
Fractal structures in nonlinear dynamics
,”
Rev. Mod. Phys.
81
,
333
386
(
2009
).
37.
R.
Gopal
,
V. K.
Chandrasekar
,
A.
Venkatesan
, and
M.
Lakshman
, “
Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling
,”
Phys. Rev. E
89
,
052914
(
2014
).
38.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
,
89
(
2013
).
39.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H. J.
Schellnhuber
, “
How dead ends undermine power grid stability
,”
Nat. Commun.
5
,
3969
(
2014
).
40.
P.
Schultz
,
P. J.
Menck
,
J.
Heitzig
, and
J.
Kurths
, “
Potentials and limits to basin stability estimation
,”
New J. Phys.
19
,
023005
(
2017
).
41.
S. W.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries
,”
Physica D
17
,
125
153
(
1985
).
42.
C.
Grebogi
,
E.
Kostelich
,
E.
Ott
, and
J. A.
Yorke
, “
Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor
,”
Physica D
25
,
347
360
(
1987
).
43.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Final state sensitivity: An obstruction to predictability
,”
Phys. Lett. A
99
,
415
418
(
1983
).
You do not currently have access to this content.