This paper concentrates on the global predefined-time synchronization of delayed memristive neural networks with external unknown disturbance via an observer-based active control. First, a global predefined-time stability theorem based on a non-negative piecewise Lyapunov function is proposed, which can obtain more accurate upper bound of the settling time estimation. Subsequently, considering the delayed memristive neural networks with disturbance, a disturbance-observer is designed to approximate the external unknown disturbance in the response system with a Hurwitz theorem and then to eliminate the influence of the unknown disturbance. With the help of global predefined-time stability theorem, the predefined-time synchronization is achieved between two delayed memristive neural networks via an active control Lyapunov function design. Finally, two numerical simulations are performed, and the results are given to show the correctness and feasibility of the predefined-time stability theorem.

1.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
W. R.
Stanley
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
2.
A.
Bouzeriba
,
A.
Boulkroune
, and
T.
Bouden
, “
Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control
,”
Neural Comput. Appl.
27
,
1349
1360
(
2016
).
3.
Q.
Zhu
and
J.
Cao
, “
Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays
,”
Nonlinear Dyn.
61
,
517
534
(
2010
).
4.
A.
El-Gohary
and
A.
Sarhan
, “
Optimal control and synchronization of Lorenz system with complete unknown parameters
,”
Chaos Solitons Fract.
30
,
1122
1132
(
2006
).
5.
W.
He
,
F.
Qian
, and
J.
Cao
, “
Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control
,”
Neural Netw.
85
,
1
9
(
2017
).
6.
Z.
Hao
,
W.
Xingyuan
, and
L.
Xiaohui
, “
Synchronization of complex-valued neural network with sliding mode control
,”
J. Franklin Inst. Eng. Appl. Math.
353
,
345
358
(
2016
).
7.
G. V.
Kamenkov
, “
On stability of motion over a finite interval of time
,”
Akad. Nauk SSSR Prikl. Mat. Meh
17
,
529
540
(
1953
).
8.
A.
Wu
and
Z.
Zeng
, “
Exponential stabilization of memristive neural networks with time delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
23
,
1919
1929
(
2012
).
9.
F.
Mazenc
,
S.
Mondie
, and
R.
Francisco
, “
Global asymptotic stabilization of feedforward systems with delay in the input
,”
IEEE Trans. Automat. Control
49
,
844
850
(
2004
).
10.
J.-L.
Wang
and
H.-N.
Wu
, “
Adaptive output synchronization of complex delayed dynamical networks with output coupling
,”
Neurocomputing
142
,
174
181
(
2014
).
11.
Y.
Ying
and
C.
Guopei
, “
Finite time control of a class of time-varying unified chaotic systems
,”
Chaos
23
,
033143
(
2013
).
12.
Z.
Cai
and
L.
Huang
, “
Finite-time stabilization of delayed memristive neural networks: Discontinuous state-feedback and adaptive control approach
,”
IEEE Trans. Neural Netw.
29
,
856
868
(
2018
).
13.
D.
Li
and
J.
Cao
, “
Finite-time synchronization of coupled networks with one single time-varying delay coupling
,”
Neurocomputing
166
,
265
270
(
2015
).
14.
C.
Chen
,
L.
Li
,
H.
Peng
,
Y.
Yang
, and
T.
Li
, “
Finite-time synchronization of memristor-based neural networks with mixed delays
,”
Neurocomputing
235
,
83
89
(
2017
).
15.
A.
Abdurahman
,
H.
Jiang
, and
Z.
Teng
, “
Finite-time synchronization for memristor-based neural networks with time-varying delays
,”
Neural Netw.
69
,
20
28
(
2015
).
16.
L.
Duan
,
L.
Huang
, and
X.
Fang
, “
Finite-time synchronization for recurrent neural networks with discontinuous activations and time-varying delays
,”
Chaos
27
,
013101
(
2017
).
17.
S.
Onori
,
P.
Dorato
,
S.
Galeani
, and
C. T.
Abdallah
, “Finite time stability design via feedback linearization,” in 44th IEEE Conference on Decision and Control (IEEE, 2005), pp. 4915–4920.
18.
J. L.
Wang
,
H. N.
Wu
,
T.
Huang
,
S. Y.
Ren
, and
J.
Wu
, “
Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength
,”
IEEE Trans. Neural Netw. Learn. Syst.
29
,
364
376
(
2018
).
19.
Z.
Zuo
, “
Non-singular fixed-time terminal sliding mode control of non-linear systems
,”
IET Control Theory Appl.
9
,
545
552
(
2015
).
20.
J.
Ni
,
L.
Ling
,
C.
Liu
,
X.
Hu
, and
S.
Li
, “
Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system
,”
IEEE Trans. Circuits Syst. II Express Briefs
64
,
151
155
(
2017
).
21.
B.
Jiang
,
Q.
Hu
, and
M. I.
Friswell
, “
Fixed-time attitude control for rigid spacecraft with actuator saturation and faults
,”
IEEE Trans. Control Syst. Technol.
24
,
1892
1898
(
2016
).
22.
A.
Polyakov
, “
Nonlinear feedback design for fixed-time stabilization of linear control systems
,”
IEEE Trans. Automat. Control
57
,
2106
2110
(
2012
).
23.
H.
Li
,
C.
Li
,
T.
Huang
, and
D.
Ouyang
, “
Fixed-time stability and stabilization of impulsive dynamical systems
,”
J. Franklin Inst. Eng. Appl. Math.
354
,
8626
8644
(
2017
).
24.
C.
Chen
,
L.
Li
,
H.
Peng
,
Y.
Yang
,
L.
Mi
, and
L.
Wang
, “
A new fixed-time stability theorem and its application to the synchronization control of memristive neural networks
,”
Neurocomputing
349
,
290
300
(
2019
).
25.
R.
Zhang
,
D.
Zeng
, and
S.
Zhong
, “
Novel master–slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control
,”
J. Franklin Inst. Eng. Appl. Math.
354
,
4930
4954
(
2017
).
26.
C.
Hu
,
J.
Yu
,
Z.
Chen
,
H.
Jiang
, and
T.
Huang
, “
Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks
,”
Neural Netw.
89
,
74
83
(
2017
).
27.
H.
Lu
,
W.
He
,
Q.
Han
, and
C.
Peng
, “
Fixed-time synchronization for coupled delayed neural networks with discontinuous or continuous activations
,”
Neurocomputing
314
,
143
153
(
2018
).
28.
C.
Chen
,
L.
Li
,
H.
Peng
,
J.
Kurths
, and
Y.
Yang
, “
Fixed-time synchronization of hybrid coupled networks with time-varying delays
,”
Chaos Solitons Fract.
108
,
49
56
(
2018
).
29.
J. D.
Sánchez-Torres
,
D.
Gómez-Gutiérrez
,
E.
López
, and
A. G.
Loukianov
, “
A class of predefined-time stable dynamical systems
,”
IMA J. Math. Control Inf.
35
,
i1
i29
(
2018
).
30.
J. D.
Sánchez-Torres
,
E. N.
Sanchez
, and
A. G.
Loukianov
, “A discontinuous recurrent neural network with predefined time convergence for solution of linear programming,” in 2014 IEEE Symposium on Swarm Intelligence (SIS) (IEEE, 2014), pp. 226–230.
31.
J. D.
Sánchez-Torres
,
E. N.
Sanchez
, and
A. G.
Loukianov
, “Predefined-time stability of dynamical systems with sliding modes,” in American Control Conference (ACC) (IEEE, 2015), pp. 5842–5846.
32.
C. A.
Anguianogijon
,
A. J.
Munozvazquez
,
J. D.
Sancheztorres
,
G.
Romerogalvan
, and
F.
Martinezreyes
, “
On predefined-time synchronisation of chaotic systems
,”
Chaos Sol. Fractals
122
,
172
178
(
2019
).
33.
E.
Jiménez-Rodríguez
,
J. D.
Sánchez-Torres
, and
A. G.
Loukianov
, “
On optimal predefined-time stabilization
,”
Int. J. Robust Nonlin. Contr.
27
,
3620
3642
(
2017
).
34.
J. D.
Sánchez-Torres
,
M.
Defoort
, and
A. J.
Muñoz-Vázquez
, “
Predefined-time stabilisation of a class of nonholonomic systems
,”
Int. J. Control
55
,
1
16
(
2019
).
35.
E.
Jiménez-Rodríguez
,
J. D.
Sánchez-Torres
,
D.
Gómez-Gutiérrez
, and
A. G.
Loukinanov
, “
Variable structure predefined-time stabilization of second-order systems
,”
Asian J. Control
21
,
1179
1188
(
2019
).
36.
T. H.
Lee
,
H. M.
Trinh
, and
J. H.
Park
, “
Stability analysis of neural networks with time-varying delay by constructing novel Lyapunov functionals
,”
IEEE Trans. Neural Netw. Learn. Syst.
29
,
4238
4247
(
2018
).
37.
R.
Wei
,
J.
Cao
, and
A.
Alsaedi
, “
Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays
,”
Cogn. Neurodyn.
12
,
121
134
(
2017
).
38.
K.
Mathiyalagan
,
H. P.
Ju
, and
R.
Sakthivel
, “
Synchronization for delayed memristive bam neural networks using impulsive control with random nonlinearities
,”
Appl. Math. Comput.
259
,
967
979
(
2015
).
39.
G.
Zhang
,
J.
Hu
, and
S.
Yi
, “
New results on synchronization control of delayed memristive neural networks
,”
Nonlinear Dyn.
81
,
1167
1178
(
2015
).
40.
R.
Rakkiyappan
,
S.
Premalatha
,
A.
Chandrasekar
, and
J.
Cao
, “
Stability and synchronization analysis of inertial memristive neural networks with time delays
,”
Cogn. Neurodyn.
10
,
437
451
(
2016
).
41.
X.
Zhu
,
X.
Yang
,
F. E.
Alsaadi
, and
T.
Hayat
, “
Fixed-time synchronization of coupled discontinuous neural networks with nonidentical perturbations
,”
Neural Process. Lett.
48
,
1161
1174
(
2018
).
42.
Y.
Zhao
,
X.
Li
, and
P.
Duan
, “
Observer-based sliding mode control for synchronization of delayed chaotic neural networks with unknown disturbance
,”
Neural Netw.
117
,
268
273
(
2019
).
43.
O.
Mofid
,
S.
Mobayen
, and
M.-H.
Khooban
, “
Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional-order chaotic systems
,”
Int. J. Adapt. Control Signal Process.
33
,
462
474
(
2019
).
44.
J.
Huang
,
Y.
Zhou
,
X.
Shi
, and
Z.
Wang
, “
A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance
,”
Math. Found. Comput.
2
,
333
346
(
2019
).
45.
T. H.
Lee
,
J. H.
Park
, and
H.
Jung
, “
Network-based h-infinity state estimation for neural networks using imperfect measurement
,”
Appl. Math. Comput.
316
,
205
214
(
2018
).
46.
J.
Yang
,
W.
Chen
, and
S.
Li
, “
Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties
,”
IET Control Theory Appl.
5
,
2053
2062
(
2011
).
47.
F.
Clark
,
Optimization and Nonsmooth Analysis
(
Wiley
,
New York
,
1983
).
48.
G.
Hardy
,
J.
Littlewood
, and
G.
Polya
,
Inequalities
(
Cambridge University Press
,
London
,
1952
), Vol. 2, pp.
151
218
.
You do not currently have access to this content.