Adversarial attacks have been alerting the artificial intelligence community recently since many machine learning algorithms were found vulnerable to malicious attacks. This paper studies adversarial attacks on Broido and Clauset classification for scale-free networks to test its robustness in terms of statistical measures. In addition to the well-known random link rewiring (RLR) attack, two heuristic attacks are formulated and simulated: degree-addition-based link rewiring (DALR) and degree-interval-based link rewiring (DILR). These three strategies are applied to attack a number of strong scale-free networks of various sizes generated from the Barabási–Albert model and the uncorrelated configuration model. It is found that both DALR and DILR are more effective than RLR in the sense that rewiring a smaller number of links can succeed in the same attack. However, DILR is as concealed as RLR in the sense that they both are introducing a relatively small change on several typical structural properties, such as the average shortest path-length, the average clustering coefficient, the average diagonal distance, and the Kolmogorov–Smirnov test of the degree distribution. The results of this paper suggest that to classify a network to be scale-free, one has to be very careful from the viewpoint of adversarial attack effects.

1.
H.
Ebel
,
L.-I.
Mielsch
, and
S.
Bornholdt
, “
Scale-free topology of e-mail networks
,”
Phys. Rev. E
66
,
035103
(
2002
).
2.
R.
Albert
, “
Scale-free networks in cell biology
,”
J. Cell Sci.
118
,
4947
4957
(
2005
).
3.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Internet: Diameter of the world-wide web
,”
Nature
401
,
130
(
1999
).
4.
Q.
Xuan
,
J.
Wang
,
M.
Zhao
,
J.
Yuan
,
C.
Fu
,
Z.
Ruan
, and
G.
Chen
, “Subgraph networks with application to structural feature space expansion,”
IEEE Trans. Knowl. Data Eng.
(
2019
).
5.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
6.
A.-L.
Barabási
,
R.
Albert
, and
H.
Jeong
, “
Mean-field theory for scale-free random networks
,”
Physica A
272
,
173
187
(
1999
).
7.
R.
Molontay
and
M.
Nagy
, “Twenty years of network science: A bibliographic and co-authorship network analysis,” arXiv2001.09006 (2020).
8.
P. L.
Krapivsky
,
S.
Redner
, and
F.
Leyvraz
, “
Connectivity of growing random networks
,”
Phys. Rev. Lett.
85
,
4629
(
2000
).
9.
A.
Barabási
, see https://www.barabasilab.com/post/love-is-all-you-need for “Love Is All You Need: Clauset’s Fruitless Search for Scale-Free Networks,” blog post (2018).
10.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
11.
X. F.
Wang
and
G.
Chen
, “
Pinning control of scale-free dynamical networks
,”
Physica A
310
,
521
531
(
2002
).
12.
Q.
Xuan
,
Z.-Y.
Zhang
,
C.
Fu
,
H.-X.
Hu
, and
V.
Filkov
, “
Social synchrony on complex networks
,”
IEEE Trans. Cybern.
48
,
1420
1431
(
2017
).
13.
S. N.
Dorogovtsev
and
J. F.
Mendes
, “
Evolution of networks
,”
Adv. Phys.
51
,
1079
1187
(
2002
).
14.
W.
Willinger
,
D.
Alderson
, and
J. C.
Doyle
, “
Mathematics and the internet: A source of enormous confusion and great potential
,”
Not. Am. Math. Soc.
56
,
586
599
(
2009
).
15.
A. D.
Broido
and
A.
Clauset
, “
Scale-free networks are rare
,”
Nat. Commun.
10
,
1017
(
2019
).
16.
E.
Klarreich
, “Scant evidence of power laws found in real-world networks,” Quanta Mag. (15 February 2018).
17.
I.
Voitalov
,
P.
van der Hoorn
,
R.
van der Hofstad
, and
D.
Krioukov
, “Scale-free networks well done,” arXiv:1811.02071 (2018).
18.
Q.
Xuan
,
B.
Fang
,
Y.
Liu
,
J.
Wang
,
J.
Zhang
,
Y.
Zheng
, and
G.
Bao
, “
Automatic pearl classification machine based on a multistream convolutional neural network
,”
IEEE Trans. Ind. Electron.
65
,
6538
6547
(
2017
).
19.
Q.
Xuan
,
Z.
Chen
,
Y.
Liu
,
H.
Huang
,
G.
Bao
, and
D.
Zhang
, “
Multiview generative adversarial network and its application in pearl classification
,”
IEEE Trans. Ind. Electron.
66
,
8244
8252
(
2018
).
20.
N.
Papernot
,
P.
McDaniel
,
S.
Jha
,
M.
Fredrikson
,
Z. B.
Celik
, and
A.
Swami
, “The limitations of deep learning in adversarial settings,” in 2016 IEEE European Symposium on Security and Privacy (EuroS&P) (IEEE, 2016), pp. 372–387.
21.
J.
Su
,
D. V.
Vargas
, and
K.
Sakurai
, “
One pixel attack for fooling deep neural networks
,”
IEEE Trans. Evol. Comput.
23
,
828
841
(
2019
).
22.
S.-M.
Moosavi-Dezfooli
,
A.
Fawzi
, and
P.
Frossard
, “Deepfool: A simple and accurate method to fool deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2574–2582.
23.
C.
Xie
,
J.
Wang
,
Z.
Zhang
,
Y.
Zhou
,
L.
Xie
, and
A.
Yuille
, “Adversarial examples for semantic segmentation and object detection,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2017) pp. 1369–1378.
24.
I. J.
Goodfellow
,
J.
Shlens
, and
C.
Szegedy
, “Explaining and harnessing adversarial examples,” arXiv:1412.6572 (2014).
25.
A.
Kurakin
,
I.
Goodfellow
, and
S.
Bengio
, “Adversarial examples in the physical world,” arXiv:1607.02533 (2016).
26.
S.-M.
Moosavi-Dezfooli
,
A.
Fawzi
,
O.
Fawzi
, and
P.
Frossard
, “Universal adversarial perturbations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017) pp. 1765–1773.
27.
H.
Dai
,
H.
Li
,
T.
Tian
,
X.
Huang
,
L.
Wang
,
J.
Zhu
, and
L.
Song
, “Adversarial attack on graph structured data,” arXiv:1806.02371 (2018).
28.
C.
Fu
,
M.
Zhao
,
L.
Fan
,
X.
Chen
,
J.
Chen
,
Z.
Wu
,
Y.
Xia
, and
Q.
Xuan
, “
Link weight prediction using supervised learning methods and its application to Yelp layered network
,”
IEEE. Trans. Knowl. Data Eng.
30
,
1507
1518
(
2018
).
29.
J.
Chen
,
J.
Zhang
,
X.
Xu
,
C.
Fu
,
D.
Zhang
,
Q.
Zhang
, and
Q.
Xuan
, “
E-LSTM-D: A deep learning framework for dynamic network link prediction
,”
IEEE Trans. Syst. Man Cybern. Syst.
(
2019
).
30.
X.
Wang
,
J.
Eaton
,
C.-J.
Hsieh
, and
F.
Wu
, “Attack graph convolutional networks by adding fake nodes,” arXiv:1810.10751 (2018).
31.
J.
Chen
,
L.
Chen
,
Y.
Chen
,
M.
Zhao
,
S.
Yu
,
Q.
Xuan
, and
X.
Yang
, “
Ga-based q-attack on community detection
,”
IEEE Trans. Comput. Soc. Syst.
6
,
491
503
(
2019
).
32.
S.
Yu
,
M.
Zhao
,
C.
Fu
,
J.
Zheng
,
H.
Huang
,
X.
Shu
,
Q.
Xuan
, and
G.
Chen
, “Target defense against link-prediction-based attacks via evolutionary perturbations,”
IEEE Trans. Knowl. Data Eng.
(
2019
).
33.
D.
Zügner
,
A.
Akbarnejad
, and
S.
Günnemann
, “Adversarial attacks on neural networks for graph data,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (ACM, 2018), pp. 2847–2856.
34.
S.
Evans
,
P.
Mills
, and
J.
Dawson
, “
The end of the p value?
,”
Br. Heart J.
60
,
177
(
1988
).
35.
V.
Amrhein
,
S.
Greenland
, and
B.
McShane
, “
Scientists rise up against statistical significance
,”
Nature
567
,
305
307
(
2019
).
36.
T.
Gross
,
C. J. D.
D’Lima
, and
B.
Blasius
, “
Epidemic dynamics on an adaptive network
,”
Phys. Rev. Lett.
96
,
208701
(
2006
).
37.
E.
Ferrara
,
O.
Varol
,
C.
Davis
,
F.
Menczer
, and
A.
Flammini
, “
The rise of social bots
,”
Commun. ACM
59
,
96
104
(
2016
).
38.
S.
Kumar
,
R.
West
, and
J.
Leskovec
, “Disinformation on the web: Impact, characteristics, and detection of Wikipedia hoaxes,” in Proceedings of the 25th International Conference on World Wide Web (ACM, 2016), pp. 591–602.
39.
M.
Gerlach
and
E. G.
Altmann
, “
Testing statistical laws in complex systems
,”
Phys. Rev. Lett.
122
,
168301
(
2019
).
40.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
,
378
(
2000
).
41.
R.
Pastor-Satorras
,
A.
Vespignani
et al., “Epidemics and immunization in scale-free networks,” in Handbook of Graphs and Networks (Wiley-VCH, Berlin, 2003).
42.
Z.
Ruan
,
M.
Tang
, and
Z.
Liu
, “
Epidemic spreading with information-driven vaccination
,”
Phys. Rev. E
86
,
036117
(
2012
).
43.
M.
Wolfson
,
A.
Budovsky
,
R.
Tacutu
, and
V.
Fraifeld
, “
The signaling hubs at the crossroad of longevity and age-related disease networks
,”
Int. J. Biochem. Cell Biol.
41
,
516
520
(
2009
).
44.
G.
Bianconi
and
A.-L.
Barabási
, “
Bose-Einstein condensation in complex networks
,”
Phys. Rev. Lett.
86
,
5632
(
2001
).
45.
X.
Li
and
G.
Chen
, “
A local-world evolving network model
,”
Physica A
328
,
287
296
(
2003
).
46.
Q.
Xuan
,
Y.
Li
, and
T.-J.
Wu
, “
Growth model for complex networks with hierarchical and modular structures
,”
Phys. Rev. E
73
,
036105
(
2006
).
47.
Q.
Xuan
,
Y.
Li
, and
T.-J.
Wu
, “
A local-world network model based on inter-node correlation degree
,”
Physica A
378
,
561
572
(
2007
).
48.
Q.
Sen
and
G.-Z.
Dai
, “
A new local-world evolving network model
,”
Chin. Phys. B
18
,
383
(
2009
).
49.
M.
Catanzaro
,
M.
Boguná
, and
R.
Pastor-Satorras
, “
Generation of uncorrelated random scale-free networks
,”
Phys. Rev. E
71
,
027103
(
2005
).
50.
J.
Ugander
,
B.
Karrer
,
L.
Backstrom
, and
C.
Marlow
, “The anatomy of the Facebook social graph,” arXiv:1111.4503 (2011).
51.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ’small-world’ networks
,”
Nature
393
,
440
(
1998
).
52.
D.
Tsiotas
, “
Detecting different topologies immanent in scale-free networks with the same degree distribution
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
6701
6706
(
2019
).
53.
See https://github.com/adbroido/SFAnalysis for “Scale-Free Network Analysis.”
54.
See https://icon.colorado.edu for “The Colorado Index of Complex Networks (ICON).”
You do not currently have access to this content.