In this paper, we consider blinking systems, i.e., non-autonomous systems generated by randomly switching between several autonomous continuous time subsystems in each sequential fixed period of time. We study cases where a non-stationary attractor of a blinking system with fast switching unexpectedly differs from the attractors of composing subsystems. Such a non-stationary attractor is associated with an attractor of the averaged system being a ghost attractor of the blinking system [Belykh et al., Phys. D: Nonlinear Phenom. 195, 188 (2004); Hasler et al., SIAM J. Appl. Dyn. Syst. 12, 1031 (2013); Belykh et al., Eur. Phys. J. Spec. Top. 222, 2497 (2013)]. Validating the theory of stochastically blinking systems [Hasler et al., SIAM J. Appl. Dyn. Syst. 12, 1031 (2013); Hasler et al., SIAM J. Appl. Dyn. Syst. 12, 1007 (2013)], we demonstrate that fast switching between two Lorenz systems yields a ghost chaotic attractor, even though the dynamics of both systems are trivial and defined by stable equilibria. We also study a blinking Hindmarsh–Rose system obtained from the original model of neuron activity by using randomly switching sequence as an external stimulus. Despite the fact that the values of the external stimulus are selected from a set corresponding to the tonic spiking mode, the blinking model exhibits bursting activity. For both systems, we analyze changes in the dynamical behavior as the period of stochastic switching increases. Using a numerical approximation of the invariant measures of the blinking and averaged systems, we give estimates of a non-stationary and ghost attractors’ proximity.

1.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
,
Phys. D: Nonlinear Phenom.
195
,
188
(
2004
).
2.
M.
Hasler
,
V.
Belykh
, and
I.
Belykh
,
SIAM J. Appl. Dyn. Syst.
12
,
1031
(
2013
).
3.
I.
Belykh
,
V.
Belykh
,
R.
Jeter
, and
M.
Hasler
,
Eur. Phys. J. Spec. Top.
222
,
2497
(
2013
).
4.
M.
Hasler
,
V.
Belykh
, and
I.
Belykh
,
SIAM J. Appl. Dyn. Syst.
12
,
1007
(
2013
).
5.
R.
Jeter
and
I.
Belykh
,
IEEE Trans. Circuits Syst. I: Regul. Pap.
62
,
1260
(
2015
).
6.
D. L.
Mills
,
IEEE Trans. Commun.
39
,
1482
(
1991
).
7.
F.
Parastesh
,
H.
Azarnoush
,
S.
Jafari
,
B.
Hatef
,
M.
Perc
, and
R.
Repnik
,
Appl. Math. Comput.
350
,
217
(
2019
).
8.
C. K.
Tse
and
M.
Di Bernardo
,
Proc. IEEE
90
,
768
(
2002
).
9.
V. N.
Belykh
, and
B.
Ukrainsky
, “
A discrete-time hybrid Lurie type system with strange hyperbolic nonstationary attractor
,” in
Dynamics and Control of Hybrid Mechanical Systems
(World Scientific,
2020
), pp.
43
52
.
10.
N.
Barabash
and
V.
Belykh
,
Cybern. Phys.
8
,
209
(
2019
).
11.
N. V.
Barabash
and
V. N.
Belykh
,
Eur. Phys. J. Spec. Top.
229
,
1071
(
2020
).
12.
V. N.
Belykh
,
N. V.
Barabash
, and
I. V.
Belykh
,
Chaos
29
,
103108
(
2019
).
13.
J. L.
Hindmarsh
and
R.
Rose
,
Proc. R. Soc. Lond. B Biol. Sci.
221
,
87
(
1984
).
14.
J.
González-Miranda
,
Int. J. Bifurcat. Chaos
17
,
3071
(
2007
).
15.
M.
Storace
,
D.
Linaro
, and
E.
de Lange
,
Chaos
18
,
033128
(
2008
).
16.
R.
Barrio
and
A.
Shilnikov
,
J. Math. Neurosci.
1
,
6
(
2011
).
17.
M.-F.
Danca
and
Q.
Wang
,
Nonlinear Dyn.
62
,
437
(
2010
).
18.
N. N.
Bogoliubov
and
Y. A.
Mitropolsky
,
Asymptotic Methods in the Theory of Nonlinear Oscillations
(
Gordon and Breach
,
New York
,
1966
).
19.
R. Z.
Khas’minskii
,
Theory Probab. Appl.
11
,
390
(
1966
).
20.
A. V.
Skorokhod
,
F. C.
Hoppensteadt
, and
H.
Salehi
, Random Perturbation Methods with Applications in Science and Engineering, Applied Mathematical Sciences (Springer, New York, 2002).
21.
Y.
Kifer
, Large Deviations and Adiabatic Transitions for Dynamical Systems and Markov Processes in Fully Coupled Averaging, Memoirs of the American Mathematical Society (American Mathematical Society, 2009).
22.
G.
Deco
and
V. K.
Jirsa
,
J. Neurosci.
32
,
3366
(
2012
).
23.
A.
Hastings
,
K. C.
Abbott
,
K.
Cuddington
,
T.
Francis
,
G.
Gellner
,
Y.-C.
Lai
,
A.
Morozov
,
S.
Petrovskii
,
K.
Scranton
, and
M. L.
Zeeman
,
Science
361
,
eaat6412
(
2018
).
24.
M.
Feigin
and
M. A.
Kagan
,
Int. J. Bifurcat. Chaos
14
,
2439
(
2004
).
25.
N.
Kryloff
and
N.
Bogoliouboff
,
Ann. Math.
38
,
65
(
1937
).
26.
D. V.
Anosov
and
Y. G.
Sinai
,
RuMaS
22
,
103
(
1967
).
27.
J.-P.
Eckmann
and
D.
Ruelle
,
The Theory of Chaotic Attractors
(
Springer
,
1985
), pp.
273
312
.
28.
E. A.
Sataev
,
Russian Math. Surv.
47
,
191
(
1992
).
29.
V.
Afraimovich
,
N.
Chernov
, and
E.
Sataev
,
Chaos
5
,
238
(
1995
).
30.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
1997
), Vol. 54.
31.
32.
M.
Dellnitz
,
A.
Hohmann
,
O.
Junge
, and
M.
Rumpf
,
Chaos
7
,
221
(
1997
).
33.
V. S.
Anishchenko
,
A. S.
Kopeikin
,
T. E.
Vadivasova
,
G. I.
Strelkova
, and
J.
Kurths
,
Phys. Rev. E
62
,
7886
(
2000
).
34.
M.
Muskulus
and
S.
Verduyn-Lunel
,
Phys. D: Nonlinear Phenom.
240
,
45
(
2011
).
36.
V.
Chigarev
,
A.
Kazakov
, and
A.
Pikovsky
,
Chaos
30
,
073114
(
2020
).
37.
L.
Shilnikov
, Appendix to Russian edition of The Hopf Bifurcation and Its Applications, edited by J. Marsden and M. McCraken (Springer-Verlag, 1980), p. 317.
38.
V.
Bykov
and
A.
Shilnikov
,
Methods of Qualitative Theory and Theory of Bifurcations
(
Gorky State University
,
Gorky
,
1989
), p. 151.
39.
J. L.
Creaser
,
B.
Krauskopf
, and
H. M.
Osinga
,
SIAM J. Appl. Dyn. Syst.
16
,
2127
(
2017
).
40.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
,
Akad. Nauk SSSR Dokl.
234
,
336
339
(
1977
).
41.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
,
Trans. Moscow Math. Soc.
44
,
153
(
1983
).
42.
A.
Shilnikov
,
L.
Shilnikov
, and
D.
Turaev
,
Int. J. Bifurcat. Chaos
3
,
1123
(
1993
).
43.
R.
Jeter
,
M.
Porfiri
, and
I.
Belykh
,
Chaos
28
,
071104
(
2018
).
44.
O.
Golovneva
,
R.
Jeter
,
I.
Belykh
, and
M.
Porfiri
,
Phys. D: Nonlinear Phenom.
340
,
1
(
2017
).
45.
M.
Porfiri
,
R.
Jeter
, and
I.
Belykh
,
Automatica
100
,
323
(
2019
).
You do not currently have access to this content.