Detrended fluctuation analysis (DFA) is widely used to characterize long-range power-law correlations in complex signals. However, it has restrictions when nonstationarity is not limited only to slow variations in the mean value. To improve the characterization of inhomogeneous datasets, we have proposed the extended DFA (EDFA), which is a modification of the conventional method that evaluates an additional scaling exponent to take into account the features of time-varying nonstationary behavior. Based on EDFA, here, we analyze rat electroencephalograms to identify specific changes in the slow-wave dynamics of brain electrical activity associated with two different conditions, such as the opening of the blood–brain barrier and sleep, which are both characterized by the activation of the brain drainage function. We show that these conditions cause a similar reduction in the scaling exponents of EDFA. Such a similarity may represent an informative marker of fluid homeostasis of the central nervous system.

1.
C.-K.
Peng
,
S. V.
Buldyrev
,
S.
Havlin
,
M.
Simons
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Mosaic organization of DNA nucleotides
,”
Phys. Rev. E
49
,
1685
1689
(
1994
).
2.
C.-K.
Peng
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
,”
Chaos
5
,
82
87
(
1995
).
3.
A. N.
Pavlov
,
A. S.
Abdurashitov
,
A. A.
Koronovskii, Jr.
,
O. N.
Pavlova
,
O. V.
Semyachkina-Glushkovskaya
, and
J.
Kurths
, “
Detrended fluctuation analysis of cerebrovascular responses to abrupt changes in peripheral arterial pressure in rats
,”
Commun. Nonlinear Sci. Numer. Simulat.
85
,
105232
(
2020
).
4.
D.
Sornette
,
Critical Phenomena in Natural Sciences
, 2nd ed. (
Springer
,
Berlin
,
2004
).
5.
N.
Wiener
, “
Generalized harmonic analysis
,”
Acta Math.
55
,
117
258
(
1930
).
6.
A.
Khintchine
, “
Korrelationstheorie der stationären stochastischen prozesse
,”
Math. Ann.
109
,
604
615
(
1934
).
7.
H. E.
Stanley
,
L. A. N.
Amaral
,
A. L.
Goldberger
,
S.
Havlin
,
P. C.
Ivanov
, and
C.-K.
Peng
, “
Statistical physics and physiology: Monofractal and multifractal approaches
,”
Physica A
270
,
309
324
(
1999
).
8.
K.
Ivanova
and
M.
Ausloos
, “
Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking
,”
Physica A
274
,
349
354
(
1999
).
9.
P.
Talkner
and
R. O.
Weber
, “
Power spectrum and detrended fluctuation analysis: Application to daily temperatures
,”
Phys. Rev. E
62
,
150
160
(
2000
).
10.
C.
Heneghan
and
G.
McDarby
, “
Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes
,”
Phys. Rev. E
62
,
6103
6110
(
2000
).
11.
J. W.
Kantelhardt
,
E.
Koscielny-Bunde
,
H. H. A.
Rego
,
S.
Havlin
, and
A.
Bunde
, “
Detecting long-range correlations with detrended fluctuation analysis
,”
Physica A
295
,
441
454
(
2001
).
12.
Q. D. Y.
Ma
,
R. P.
Bartsch
,
P.
Bernaola-Galván
,
M.
Yoneyama
, and
P. C.
Ivanov
, “
Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis
,”
Phys. Rev. E
81
,
031101
(
2010
).
13.
D.
Horvatic
,
H. E.
Stanley
, and
B.
Podobnik
, “
Detrended cross-correlation analysis for non-stationary time series with periodic trends
,”
Europhys. Lett.
94
,
18007
(
2011
).
14.
O. N.
Pavlova
,
A. S.
Abdurashitov
,
M. V.
Ulanova
,
N. A.
Shushunova
, and
A. N.
Pavlov
, “
Effects of missing data on characterization of complex dynamics from time series
,”
Commun. Nonlinear Sci. Numer. Simulat.
66
,
31
40
(
2019
).
15.
N. S.
Frolov
,
V. V.
Grubov
,
V. A.
Maksimenko
,
A.
Lüttjohann
,
V. V.
Makarov
,
A. N.
Pavlov
,
E.
Sitnikova
,
A. N.
Pisarchik
,
J.
Kurths
, and
A. E.
Hramov
, “
Statistical properties and predictability of extreme epileptic events
,”
Sci. Rep.
9
,
7243
(
2019
).
16.
O. N.
Pavlova
and
A. N.
Pavlov
, “
Scaling features of intermittent dynamics: Differences of characterizing correlated and anti-correlated data sets
,”
Physica A
536
,
22586
(
2019
).
17.
J. F.
Muzy
,
E.
Bacry
, and
A.
Arneodo
, “
The multifractal formalism revisited with wavelets
,”
Int. J. Bifurcation Chaos
4
,
245
302
(
1994
).
18.
R. M.
Bryce
and
K. B.
Sprague
, “
Revisiting detrended fluctuation analysis
,”
Sci. Rep.
2
,
315
(
2012
).
19.
K.
Hu
,
P. C.
Ivanov
,
Z.
Chen
,
P.
Carpena
, and
H. E.
Stanley
, “
Effect of trends on detrended fluctuation analysis
,”
Phys. Rev. E
64
,
011114
(
2001
).
20.
Z.
Chen
,
P. C.
Ivanov
,
K.
Hu
, and
H. E.
Stanley
, “
Effect of nonstationarities on detrended fluctuation analysis
,”
Phys. Rev. E
65
,
041107
(
2002
).
21.
Y. H.
Shao
,
G. F.
Gu
,
Z. Q.
Jiang
,
W. X.
Zhou
, and
D.
Sornette
, “
Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series
,”
Sci. Rep.
2
,
835
(
2012
).
22.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H. E.
Stanley
, “
Multifractal detrended fluctuation analysis of nonstationary time series
,”
Physica A
316
,
87
114
(
2002
).
23.
R.
Daneman
and
A.
Prat
, “
The blood-brain barrier
,”
Cold Spring Harb. Perspect. Biol.
7
(
1
),
a020412
(
2015
).
24.
P.
Ballabh
,
A.
Braun
, and
M.
Nedergaard
, “
The blood-brain barrier: An overview: Structure, regulation, and clinical implications
,”
Neurobiol. Dis.
16
(
1
),
1
13
(
2004
).
25.
S.
Gupta
,
S.
Dhanda
, and
R.
Sandhir
, “Anatomy and physiology of blood-brain barrier,” in Brain Targeted Drug Delivery System (Elsevier, 2019), pp. 7–31.
26.
J. F.
Jordao
,
C. A.
Ayala-Grosso
,
K.
Markham
,
Y.
Huang
,
R.
Chopra
,
J.
McLaurin
,
K.
Hynynen
, and
I.
Aubert
, “
Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease
,”
PLoS ONE
5
,
e10549
(
2010
).
27.
G.
Leinenga
and
J.
Götz
, “
Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer’s disease mouse model
,”
Sci. Transl. Med.
7
,
278ra33
(
2015
).
28.
R. M.
Nisbet
,
A.
van der Jeugd
,
G.
Leinenga
,
H. T.
Evans
,
P. W.
Janowicz
, and
J.
Götz
, “
Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model
,”
Brain
140
,
1220
1230
(
2017
).
29.
N. E.
Fultz
,
G.
Bonmassar
,
K.
Setsompop
,
R. A.
Stickgold
,
B. R.
Rosen
,
J. R.
Polimeni
, and
L. D.
Lewis
, “
Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep
,”
Science
366
,
628
631
(
2019
).
30.
L.
Xie
,
H.
Kang
,
Q.
Xu
,
M. J.
Chen
,
Y.
Liao
,
M.
Thiyagarajan
,
J.
O’Donnell
,
D. J.
Christensen
,
C.
Nicholson
,
J. J.
Iliff
,
T.
Takano
,
R.
Deane
, and
M.
Nedergaard
, “
Sleep drives metabolite clearance from the adult brain
,”
Science
342
,
373
377
(
2013
).
31.
S.
Da Mesquita
,
Z.
Fu
, and
J.
Kipnis
, “
The meningeal lymphatic system: A new player in neurophysiology
,”
Neuron
100
,
375
388
(
2018
).
32.
O.
Semyachkina-Glushkovskaya
,
A.
Abdurashitov
,
A.
Dubrovsky
,
D.
Bragin
,
O.
Bragina
,
N.
Shushunova
,
G.
Maslyakova
,
N.
Navolokin
,
A.
Bucharskaya
,
V.
Tuchin
,
J.
Kurths
, and
A.
Shirokov
, “
Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: Mechanisms of brain clearing
,”
J. Biomed. Opt.
22
,
121719
(
2017
).
33.
O.
Semyachkina-Glushkovskaya
,
V.
Chehonin
,
E.
Borisova
,
I.
Fedosov
,
A.
Namykin
,
A.
Abdurashitov
,
A.
Shirokov
,
B.
Khlebtsov
,
Y.
Lyubun
,
N.
Navolokin
,
M.
Ulanova
,
N.
Shushunova
,
A.
Khorovodov
,
I.
Agranovich
,
A.
Bodrova
,
M.
Sagatova
,
A. E.
Shareef
,
E.
Saranceva
,
T.
Iskra
,
M.
Dvoryatkina
,
E.
Zhinchenko
,
O.
Sindeeva
,
V.
Tuchin
, and
J.
Kurths
, “
Photodynamic opening of the blood-brain barrier and pathways of brain clearing
,”
J. Biophotonics
11
,
e201700287
(
2018
).
34.
O.
Semyachkina-Glushkovskaya
,
D.
Postnov
, and
J.
Kurths
, “
Blood-brain barrier, lymphatic clearance, and recovery: Ariadne’s thread in labyrinths of hypotheses
,”
Int. J. Molecular Sci.
19
,
3818
(
2018
).
35.
Y.
Qi
,
T.
Yu
,
J.
Xu
,
P.
Wan
,
Y.
Ma
,
J.
Zhu
,
Y.
Li
,
H.
Gong
,
Q.
Luo
, and
D.
Zhu
, “
FDISCO: Advanced solvent-based clearing method for imaging whole organs
,”
Sci. Adv.
5
(
1
),
eaau8355
(
2019
).
36.
H.-L.
Wang
and
T. W.
Lai
, “
Optimization of Evans blue quantitation in limited rat tissue samples
,”
Sci. Rep.
4
,
6588
(
2015
).
37.
A.
Hoffmann
,
J.
Bredno
,
M.
Wendland
,
N.
Derugin
,
P.
Ohara
, and
M.
Wintermark
, “
High and low molecular weight fluorescein isothiocyanate (FITC)-dextran to assess blood-brain barrier disruption: Technical consideration
,”
Transl. Stroke Res.
2
(
1
),
106
111
(
2011
).
38.
N. P.
Castellanos
and
V. A.
Makarov
, “
Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis
,”
J. Neurosci. Methods
158
,
300
312
(
2006
).
39.
K. B.
Chen
,
E. Y.
Kuo
,
K. S.
Poon
,
K. S.
Cheng
,
C. S.
Chang
,
Y. C.
Liu
, and
T. W.
Lai
, “
Increase in Evans blue dye extravasation into the brain in the late developmental stage
,”
Neuroreport
23
(
12
),
699
701
(
2012
).
40.
D.
Fernández-López
,
J.
Faustino
,
R.
Daneman
,
L.
Zhou
,
S. Y.
Lee
,
N.
Derugin
,
M. F.
Wendland
, and
Z. S.
Vexler
, “
Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat
,”
J. Neurosci.
32
(
28
),
9588
9600
(
2012
).
You do not currently have access to this content.