The propagation of light pulses in dual-core nonlinear optical fibers is studied using a model proposed by Sakaguchi and Malomed. The system consists of a supercritical complex Ginzburg–Landau equation coupled to a linear equation. Our analysis includes single standing and walking solitons as well as walking trains of 3, 5, 6, and 12 solitons. For the characterization of the different scenarios, we used ensemble-averaged square displacement of the soliton trajectories and time-averaged power spectrum of the background waves. Power law spectra, indicative of turbulence, were found to be associated with random walks. The number of solitons (or their separations) can trigger anomalous random walks or totally suppress the background waves.
REFERENCES
1.
A.
Hasegawa
and F.
Tappert
, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
,” Appl. Phys. Lett.
23
, 142
–144
(1973
). 2.
L.
Mollenauer
, R.
Stolen
, and J.
Gordon
, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers
,” Phys. Rev. Lett.
45
, 1095
–1098
(1980
). 3.
A.
Newell
, Solitons in Mathematics and Physics
(SIAM
, Philadelphia
, 1985
).4.
N.
Akhmediev
and A.
Ankiewicz
, Dissipative Solitons: From Optics to Biology and Medicine
(Springer
, Berlin
, 2008
).5.
O.
Descalzi
, M.
Clerc
, S.
Residori
, and G.
Assanto
, Localized States in Physics: Solitons and Patterns
(Springer
, Berlin
, 2010
).6.
R.
Heinrichs
, G.
Ahlers
, and D.
Cannell
, “Traveling waves and spatial variation in the convection of a binary mixture
,” Phys. Rev. A
35
, 2761(R)
(1987
). 7.
E.
Moses
, J.
Fineberg
, and V.
Steinberg
, “Multistability and confined traveling-wave patterns in a convecting binary mixture
,” Phys. Rev. A
35
, 2757(R)
(1987
).8.
H.
Rotermund
, S.
Jakubith
, A.
von Oertzen
, and G.
Ertl
, “Solitons in a surface reaction
,” Phys. Rev. Lett.
66
, 3083
(1991
). 9.
A.
Liehr
, Dissipative Solitons in Reaction Diffusion Systems
(Springer
, Berlin
, 2013
).10.
O.
Lioubashevski
, Y.
Hamiel
, A.
Agnon
, Z.
Reches
, and J.
Fineberg
, “Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension
,” Phys. Rev. Lett.
83
, 3190
(1999
). 11.
P.
Umbanhowar
, F.
Melo
, and H. L.
Swinney
, “Localized excitations in a vertically vibrated granular layer
,” Nature
382
, 793
(1996
). 12.
13.
B.
Malomed
, “Solitons and nonlinear dynamics in dual-core optical fibers,” in Handbook of Optical Fibers, edited by G.-D. Peng (Springer-Verlag, New York, 2018).14.
H.
Winful
and D.
Walton
, “Passive mode coupling through nonlinear coupling in a dual-core fiber laser
,” Opt. Lett.
17
, 1688
(1992
). 15.
B.
Malomed
and H.
Winful
, “Stable solitons in two-component active systems
,” Phys. Rev. E
53
, 5365
(1996
). 16.
H.
Sakaguchi
and B.
Malomed
, “Breathing and randomly walking pulses in a semilinear Ginzburg–Landau system
,” Physica D
147
, 273
–282
(2000
). 17.
I.
Aranson
and L.
Kramer
, “The world of the complex Ginzburg–Landau equation
,” Rev. Mod. Phys.
74
, 99
–143
(2002
). 18.
E.
Knobloch
and J.
De Luca
, “Amplitude equations for travelling wave convection
,” Nonlinearity
3
, 975
(1990
). 19.
H. R.
Brand
, P.
Lomdahl
, and A.
Newell
, “Evolution of the order parameter in situations with broken rotational symmetry
,” Phys. Lett. A
118
, 67
–73
(1986
). 20.
V.
Croquette
and H.
Williams
, “Nonlinear competition between waves on convective rolls
,” Phys. Rev. A
39
, 2765
–2768
(1989
). 21.
O.
Descalzi
and R.
Graham
, “Nonequilibrium potential for the Ginzburg–Landau equation in the phase-turbulent regime
,” Z. Phys. B
93
, 509
(1994
). 22.
B.
Shraiman
, A.
Pumir
, W.
van Saarloos
, P.
Hohenberg
, H.
Chaté
, and M.
Holen
, “Spatiotemporal chaos in the one-dimensional complex Ginzburg–Landau equation
,” Physica D
57
, 241
–248
(1992
). 23.
O.
Thual
and S.
Fauve
, “Localized structures generated by subcritical instabilities
,” J. Phys. France
49
, 1829
(1988
). 24.
W.
Renninger
, A.
Chong
, and F.
Wise
, “Dissipative solitons in normal-dispersion fiber lasers
,” Phys. Rev. A
77
, 023814
(2008
). 25.
S.
Cundiff
, J.
Soto-Crespo
, and N.
Akhmediev
, “Experimental evidence for soliton explosions
,” Phys. Rev. Lett.
88
, 073903
(2002
). 26.
A.
Runge
, N.
Broderick
, and M.
Erkintalo
, “Observation of soliton explosions in a passively mode-locked fiber laser
,” Optica
2
, 36
–39
(2015
). 27.
J.
Soto-Crespo
, N.
Akhmediev
, and A.
Ankiewicz
, “Pulsating, creeping, and erupting solitons in dissipative systems
,” Phys. Rev. Lett.
85
, 2937
–2940
(2000
). 28.
M.
Facão
and M.
Carvalho
, “Plain and oscillatory solitons of the cubic complex Ginzburg–Landau equation with nonlinear gradient terms
,” Phys. Rev. E
96
, 042220
(2017
). 29.
O.
Descalzi
, J.
Cisternas
, and H. R.
Brand
, “Mechanism of dissipative soliton stabilization by nonlinear gradient terms
,” Phys. Rev. E
100
, 052218
(2019
). 30.
S.
Longhi
, “Bloch dynamics of light waves in helical optical waveguide arrays
,” Phys. Rev. B
76
, 195119
(2007
). 31.
J.
Gordon
and H.
Haus
, “Random walk of coherently amplified solitons in optical fiber transmission
,” Opt. Lett.
11
, 665
(1986
). 32.
M.
Clerc
, S.
Coulibaly
, and M.
Tlidi
, “Time-delayed nonlocal response inducing traveling temporal localized structures
,” Phys. Rev. Res.
2
, 013024
(2020
). 33.
V.
Méndez
, S.
Fedotov
, and W.
Horsthemke
, Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(Springer-Verlag
, Berlin
, 2010
).34.
M.
Karpov
, M.
Pfeiffer
, H.
Guo
, W.
Weng
, J.
Liu
, and T.
Kippenberg
, “Dynamics of soliton crystals in optical microresonators
,” Nat. Phys.
15
, 1071
–1077
(2019
). 35.
L.
Lugiato
, F.
Prati
, M.
Gorodetsky
, and J.
Kippenberg
, “From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs
,” Phil. Trans. R. Soc. A
376
, 20180113
(2018
). 36.
L.
Aycock
, H.
Hurst
, D.
Efimkin
, D.
Genkina
, H.
Lu
, V.
Galitski
, and I.
Spielman
, “Brownian motion of solitons in a Bose–Einstein condensate
,” Proc. Natl. Acad. Sci. U.S.A.
114
, 2503
–2508
(2017
). 37.
V.
Taranenko
, K.
Staliunas
, and C.
Weiss
, “Spatial soliton laser localized structures in a laser with a saturable absorber in a self-imaging resonator
,” Phys. Rev. A
56
, 1582
(1997
). 38.
D.
Turaev
, M.
Radziunas
, and A.
Vladimirov
, “Chaotic soliton walk in periodically modulated media
,” Phys. Rev. E
77
, 065201(R)
(2008
). 39.
V.
Folli
and C.
Conti
, “Frustrated Brownian motion of nonlocal solitary waves
,” Phys. Rev. Lett.
104
, 193901
(2010
). 40.
H.
Louis
, M.
Tlidi
, and E.
Louvergneaux
, “Experimental evidence of dynamical propagation for solitary waves in ultraslow stochastic non-local Kerr medium
,” Opt. Express
24
, 16206
–16211
(2016
). 41.
P.
Peñano
, J.
Palastro
, B.
Hafizi
, M.
Helle
, and G.
DiComo
, “Self-channeling of high-power laser pulses through strong atmospheric turbulence
,” Phys. Rev. A
96
, 013829
(2017
). 42.
C.
Cartes
, J.
Cisternas
, O.
Descalzi
, and H. R.
Brand
, “Model of a two-dimensional extended chaotic system: Evidence of diffusing dissipative solitons
,” Phys. Rev. Lett.
109
, 178303
(2012
). 43.
J.
Cisternas
, O.
Descalzi
, T.
Albers
, and G.
Radons
, “Anomalous diffusion of dissipative solitons in the cubic–quintic complex Ginzburg–Landau equation in two spatial dimensions
,” Phys. Rev. Lett.
116
, 203901
(2016
). 44.
J.
Cisternas
, T.
Albers
, and G.
Radons
, “Normal and anomalous random walks of 2D solitons
,” Chaos
28
, 075505
(2018
). 45.
T.
Albers
, J.
Cisternas
, and G.
Radons
, “A new kind of chaotic diffusion: Anti-persistent random walks of explosive dissipative solitons
,” New J. Phys.
21
, 103034
(2019
). 46.
O.
Omel’chenko
, M.
Wolfrum
, and Y.
Maistrenko
, “Chimera states as chaotic spatiotemporal patterns
,” Phys. Rev. E
81
, 065201(R)
(2010
). 47.
J.
Xie
, E.
Knobloch
, and H.
Kao
, “Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
,” Phys. Rev. E
90
, 022919
(2014
). 48.
A.
Alvarez-Socorro
, M.
Clerc
, M.
Ferré
, and E.
Knobloch
, “Chaotic motion of localized structures
,” Phys. Rev. E
101
, 042212
(2020
). 49.
J.
Weideman
and B.
Herbst
, “Split-step methods for the solution of the nonlinear Schrödinger equation
,” SIAM J. Numer. Anal.
23
, 485
–507
(1986
). 50.
J.
Klafter
and I.
Sokolov
, First Steps in Random Walks: From Tools to Applications
(Oxford University Press
, Oxford
, 2011
).51.
R.
Klages
, G.
Radons
, and I.
Sokolov
, Anomalous Transport: Foundations and Applications
(Wiley-VCH Verlag
, Weinheim
, 2008
).52.
T.
Albers
, J.
Cisternas
, and G.
Radons
, “A hidden Markov model for the dynamics of diffusing dissipative solitons
,” J. Stat. Mech. Theor. Exp.
2019
, 094013
(2019
). 53.
V.
Zaburdaev
, S.
Denisov
, and J.
Klafter
, “Lévy walks
,” Rev. Mod. Phys.
87
, 483
(2015
). 54.
P.
Flomenbon
and A.
Taloni
, “On single file and less dense processes
,” Europhys. Lett.
83
, 20004
(2008
). 55.
J.
Acebrón
, L.
Bonilla
, C. P.
Vicente
, F.
Ritort
, and R.
Spigler
, “The Kuramoto model: A simple paradigm for synchronization phenomena
,” Rev. Mod. Phys.
77
, 137
(2005
). 56.
F.
Dörfler
, M.
Chertkov
, and F.
Bullo
, “Synchronization in complex oscillator networks and smart grids
,” Proc. Natl. Acad. Sci. U.S.A.
110
, 2005
(2013
). 57.
I.
Uzunov
, V.
Stoev
, and T.
Tzoleva
, “Influence of the initial phase difference between pulses on the -soliton interaction in trains of unequal solitons in optical fibers
,” Optics Commun.
97
, 307
–311
(1993
). 58.
K.
Takeuchi
, H.
Yang
, F.
Ginelli
, G.
Radons
, and H.
Chaté
, “Hyperbolic decoupling of tangent space and effective dimension of dissipative systems
,” Phys. Rev. E
84
, 046214
(2011
). 59.
J.
Cisternas
, O.
Descalzi
, and C.
Cartes
, “The transition to explosive solitons and the destruction of invariant tori
,” Centr. Eur. J. Phys.
10
, 660
–668
(2012
). 60.
R.
Metzler
, J.-H.
Jeon
, A.
Cherstvy
, and E.
Barkai
, “Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,” Phys. Chem. Chem. Phys.
16
, 24128
(2014
). 61.
T.
Albers
and G.
Radons
, “Subdiffusive continuous time random walks and weak ergodicity breaking analyzed with the distribution of generalized diffusivities
,” Europhys. Lett.
102
, 40006
(2013
). 62.
E.
Floriani
, R.
Mannella
, and P.
Grigolini
, “Noise-induced transition from anomalous to ordinary diffusion: The crossover time as a function of noise intensity
,” Phys. Rev. E
52
, 5910
–5917
(1995
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.