We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich–Rubinstein–Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level.
REFERENCES
1.
C.
Robinson
, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
(CRC Press
, Boca Raton
, 1999
).2.
R. L.
Devaney
, “Reversible diffeomorphisms and flows
,” Trans. Am. Math. Soc.
218
, 89
–113
(1976
). 3.
4.
C.
Grebogi
, E.
Ott
, and J. A.
Yorke
, “Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation
,” Phys. Rev. Lett.
50
, 935
–938
(1983
). 5.
A.
Pikovsky
, G.
Osipov
, M.
Rosenblum
, M.
Zaks
, and J.
Kurths
, “Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization
,” Phys. Rev. Lett.
79
, 47
–50
(1997
). 6.
A. O.
Kazakov
, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems
,” Radiophys. Quantum Electron.
61
, 650
–658
(2019
). 7.
D.
Topaj
and A.
Pikovsky
, “Reversibility vs synchronization in oscillator lattices
,” Physica D
170
, 118
–130
(2002
). 8.
S. V.
Gonchenko
, L. P.
Shilnikov
, and D. V.
Turaev
, “On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle,” in Proceedings of the Steklov Institute of Mathematics (Springer
, 1997), Vol. 216, pp. 70–118.9.
S. V.
Gonchenko
and D. V.
Turaev
, “On three types of dynamics and the notion of attractor
,” Proc. Steklov Inst. Math.
297
, 116
–137
(2017
). 10.
A. S.
Gonchenko
, S. V.
Gonchenko
, A. O.
Kazakov
, and D. V.
Turaev
, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators
,” Physica D
350
, 45
–57
(2017
). 11.
A.
Kazakov
, “Merger of a Hénon-like attractor with a Hénon-like repeller in a model of vortex dynamics
,” Chaos
30
, 011105
(2020
). 12.
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in stationary states
,” J. Stat. Phys.
80
, 931
–970
(1995
). 13.
W. G.
Hoover
, O.
Kum
, and H. A.
Posch
, “Time-reversible dissipative ergodic maps
,” Phys. Rev. E
53
, 2123
(1996
). 14.
M.
Muskulus
and S.
Verduyn-Lunel
, “Wasserstein distances in the analysis of time series and dynamical systems
,” Physica D
240
, 45
–58
(2011
). 15.
J. M.
Fraser
, “First and second moments for self-similar couplings and Wasserstein distances
,” Math. Nachr.
288
, 2028
–2041
(2015
). 16.
I.
Cipriano
and M.
Pollicott
, “Stationary measures associated to analytic iterated function schemes
,” Math. Nachr.
291
, 1049
–1054
(2018
). 17.
C.
Villani
, Optimal Transport. Old and New
(Springer
, Berlin
, 2009
).18.
S. A.
Marvel
, R. E.
Mirollo
, and S. H.
Strogatz
, “Phase oscillators with global sinusoidal coupling evolve by Möbius group action
,” Chaos
19
, 043104
(2009
). 19.
C. C.
Gong
, R.
Toenjes
, and A.
Pikovsky
, “Coupled Möebius maps as a tool to model Kuramoto phase synchronization,” arXiv: 2001.07593 (2020).20.
A.
Katok
and B.
Hasselblatt
, Introduction to the Modern Theory of Dynamical Systems
(Cambridge University Press
, 1995
).21.
B.
Chirikov
and D.
Shepelyansky
, “Chirikov standard map
,” Scholarpedia
3
, 3550
(2008
). 22.
P.
Duarte
, “Plenty of elliptic islands for the standard family of area preserving maps,” in Annales de l’Institut Henri Poincare (C) Non Linear Analysis (Elsevier, 1994), Vol. 11, pp. 359–409.23.
I. P.
Cornfeld
, S. V.
Fomin
, and Ya. G.
Sinai
, Ergodic Theory
(Springer
, New York
, 1982
).24.
N. K.
Gavrilov
and L. P.
Shilnikov
, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I
,” Math. USSR Sbornik
17
, 467
(1972
). 25.
N. K.
Gavrilov
and L. P.
Shilnikov
, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II
,” Math. USSR Sbornik
19
, 139
(1973
). 26.
V. S.
Afraimovich
and L. P.
Shilnikov
, Strange Attractors and Quasiattractors in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman, New York, 1983).27.
S. V.
Gonchenko
, L. P.
Shilnikov
, and D. V.
Turaev
, “Quasiattractors and homoclinic tangencies
,” Comput. Math. Appl.
34
, 195
–227
(1997
). 28.
A. A.
Emelianova
and V. I.
Nekorkin
, “On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators
,” Chaos
29
, 111102
(2019
). 29.
A. A.
Emelianova
and V. I.
Nekorkin
, “The third type of chaos in a system of two adaptively coupled phase oscillators
,” Chaos
30
, 051105
(2020
). 30.
S. E.
Newhouse
, “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms
,” Publ. Math. l’IHÉS
50
, 101
–151
(1979
). 31.
B. R.
Hunt
and E.
Ott
, “Fractal properties of robust strange nonchaotic attractors
,” Phys. Rev. Lett.
87
, 254101
(2001
). 32.
U.
Feudel
, S. P.
Kuznetsov
, and A.
Pikovsky
, Strange Nonchaotic Attractors. Dynamics between Order and Chaos in Quasiperiodically Forced Systems
(World Scientific
, Singapore
, 2006
).33.
M. H.
Matheny
, J.
Emenheiser
, W.
Fon
, A.
Chapman
, A.
Salova
, M.
Rohden
, J.
Li
, M.
Hudoba de Badyn
, M.
P’osfai
, L.
Duenas-Osorio
, M.
Mesbahi
, J. P.
Crutchfield
, M. C.
Cross
, R. M.
DŚouza
, and M. L.
Roukes
, “Exotic states in a simple network of nanoelectromechanical oscillators
,” Science
363
, eaav7932
(2019
). 34.
T.
Dombre
, U.
Frisch
, J. M.
Greene
, M.
Hénon
, A.
Mehr
, and A. M.
Soward
, “Chaotic streamlines in the ABC flows
,” J. Fluid Mech.
167
, 353
(1986
). 35.
H.
Kantz
, “Quantifying the closeness of fractal measures
,” Phys. Rev. E
49
, 5091
–5097
(1994
). 36.
R. H.
Riedi
and I.
Scheuring
, “Conditional and relative multifractal spectra
,” Fractals
5
, 153
–168
(1997
). 37.
W. J.
Xie
, Z. Q.
Jiang
, G. F.
Gu
, X.
Xiong
, and W. X.
Zhou
, “Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application
,” New J. Phys.
17
, 103020
(2015
). 38.
O.
Burylko
, A.
Mielke
, M.
Wolfrum
, and S.
Yanchuk
, “Coexistence of Hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling
,” SIAM J. Appl. Dyn. Syst.
17
, 2076
–2105
(2018
). 39.
A. V.
Borisov
, I. S.
Mamaev
, and I. A.
Bizyaev
, “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere
,” Regul. Chaotic Dyn.
18
, 277
–328
(2013
). 40.
A. S.
Gonchenko
, S. V.
Gonchenko
, and A. O.
Kazakov
, “Richness of chaotic dynamics in nonholonomic models of a celtic stone
,” Regul. Chaotic Dyn.
18
, 521
–538
(2013
). 41.
I. A.
Bizyaev
, A. V.
Borisov
, and A. O.
Kazakov
, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors
,” Regul. Chaotic Dyn.
20
, 605
–626
(2015
). 42.
E. V.
Vetchanin
and I. S.
Mamaev
, “Dynamics of two point vortices in an external compressible shear flow
,” Regul. Chaotic Dyn.
22
, 893
–908
(2017
). 43.
G.
Doran
, “PyEMD: Earth mover’s distance for Python” (2014), see https://github.com/garydoranjr/pyemd (accessed May 2020).44.
J.
Forrest
, D.
de la Nuez
, and R.
Lougee-Heimer
, “CLP: COIN linear program code” (2004), see https://www.coin-or.org/Clp/index.html (accessed May 2020).45.
P.
Jensen
, “Operation research methods” (1999), see https://www.me.utexas.edu/ jensen/methods/net.pdf/nettrans.pdf (accessed May 2020).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.