The control effects on the convection dynamics in a viscoelastic fluid-saturated porous medium heated from below and cooled from above are studied. A truncated Galerkin expansion was applied to balance equations to obtain a four-dimensional generalized Lorenz system. The dynamical behavior is mainly characterized by the Lyapunov exponents, bifurcation, and isospike diagrams. The results show that within a range of moderate and high Rayleigh numbers, proportional controller gain is found to enhance the stabilization and destabilization effects on the thermal convection. Furthermore, due to the effect of viscoelasticity, the system exhibits remarkable topological structures of regular regions embedded in chaotic domains.
REFERENCES
1.
D. A.
Nield
and A.
Bejan
, Convection in Porous Media
, 5th ed. (Springer International Publishing AG
, Switzerland
, 2017
).2.
J.
Bear
, Modeling Phenomena of Flow and Transport in Porous Media
(Springer International Publishing AG
, Switzerland
, 2018
).3.
L. J.
Sheu
, L. M.
Tam
, J. H.
Chen
, H. K.
Chen
, K. T.
Lin
, and Y.
Kang
, “Chaotic convection of viscoelastic fluids in porous media
,” Chaos Solitons Fractals
37
, 113
(2008
). 4.
R. E.
Khayat
, “Non-linear overstability in the thermal convection of viscoelastic fluids
,” J. Non-Newtonian Fluid Mech.
53
, 331
(1994
). 5.
R. E.
Khayat
, “Chaos and overstability in the thermal convection of viscoelastic fluids
,” J. Non-Newtonian Fluid Mech.
53
, 227
(1995
). 6.
R. E.
Khayat
, “Nonlinear overstability in the thermal convection of viscoelastic fluids
,” J. Non-Newtonian Fluid Mech.
58
, 331
(1995
). 7.
R. E.
Khayat
, “Chaos in the thermal convection of weakly shear-thinning fluids
,” J. Non-Newtonian Fluid Mech.
63
, 153
(1996
). 8.
E.
Abu-Ramadan
, J. M.
Hay
, and R. E.
Khayat
, “Characterization of chaotic thermal convection of viscoelastic fluids
,” J. Non-Newtonian Fluid Mech.
115
, 79
(2003
). 9.
P.
Kolodner
, “Oscillatory convection in viscoelastic DNA suspensions
,” J. Non-Newtonian Fluid Mech.
75
, 167
(1998
). 10.
H.
Pleiner
, M.
Liu
, and H. R.
Brand
, “Nonlinear fluid dynamics description of nonNewtonian fluids
,” Acta Rheol.
43
, 502
(2004
). 11.
R. C.
Sharma
, “Effect of rotation on thermal instability of a viscoelastic fluid
,” Acta Phys. Hungarica
40
, 11
(1976
). 12.
R. C.
Sharma
and Sharma
, “Thermal instability of an Oldroydian fluid with suspended particles in hydromagnetics in porous medium
,” Polym. Plast. Technol. Eng.
33
(3
), 323
(1994
). 13.
L. M.
Pérez
, J.
Bragard
, D.
Laroze
, J.
Martinez-Mardones
, and H.
Pleiner
, “Thermal convection thresholds in an Oldroyd magnetic fluid
,” J. Magn. Magn. Mater.
323
, 691
(2011
). 14.
L. M.
Pérez
, J.
Bragard
, P.
Díaz
, H. L.
Mancini
, D.
Laroze
, and H.
Pleiner
, “Magneto-viscous effect on thermal convection thresholds in an Oldroyd magnetic fluid
,” J. Magn. Magn. Mater.
444
, 432
(2017
). 15.
D.
Laroze
and H.
Pleiner
, “Thermal convection in a nonlinear non-Newtonian magnetic fluid
,” Commun. Nonlinear Sci. Numer. Simulat.
26
, 167
(2015
). 16.
B. S.
Bhadauria
and P.
Kiran
, “Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter
,” Int. J. Heat Mass Transf.
84
, 610
(2015
). 17.
B. S.
Bhadauria
, “Chaotic convection in a viscoelastic fluid saturated porous medium with a heat source
,” J. Appl. Math.
2016
, 1487616
. 18.
E.
Ott
, C.
Grebogi
, and J. A.
Yorke
, “Controlling chaos
,” Phys. Rev. Lett.
64
, 1196
(1990
). 19.
K.
Pyragas
, “Continuous control of chaos by self-controlling feedback
,” Phys. Lett. A
170
, 421
(1992
). 20.
K.
Pyragas
, “Delayed feedback control of chaos
,” Philos. Trans. R. Soc. A
364
, 2309
(2006
). 21.
H. T.
Yau
and C. L.
Chen
, “Chaos control of Lorenz systems using adaptive controller with input saturation
,” Chaos Solitons Fractals
34
, 1567
(2007
). 22.
W. M.
Bessa
, A. S.
de Paula
, and M. A.
Savi
, “Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum
,” Chaos Solitons Fractals
42
, 784
(2009
). 23.
M. N.
Mahmud
and I.
Hashim
, “Small and moderate Prandtl number chaotic convection in porous media in the presence of feedback control
,” Transp. Porous Media
84
, 421
(2010
). 24.
M. N.
Mahmud
and I.
Hashim
, “Small and moderate Vadasz number chaotic convection in porous media in the presence of non-Boussinesq effects and feedback control
,” Phys. Lett. A
375
, 2382
(2011
). 25.
R.
Roslan
, M. N.
Mahmud
, and I.
Hashim
, “Effects of feedback control on chaotic convection in fluid-saturated porous media
,” Int. J. Heat Mass Transf.
54
, 404
(2011
). 26.
M. N.
Mahmud
, “Stability enhancement of high Prandtl number chaotic convection in an anisotropic porous layer with feedback control
,” J. Phys.: Conf. Ser.
1011
, 012081
(2018
). 27.
Q. L.
Sun
, S. W.
Wang
, M. L.
Zhao
, C.
Yin
, and Q. Y.
Zhang
, “Weak nonlinear analysis of Darcy-Brinkman convection in Oldroyd-B fluid saturated porous media under temperature modulation
,” Int. J. Heat Mass Transf.
138
, 244
(2019
). 28.
V.
Ali
, T.
Gul
, S.
Afridi
, F.
Ali
, S. O.
Alharbi
, and I.
Khan
, “Thin film flow of micropolar fluid in a permeable medium
,” Coating
138
, 244
(2019
).29.
M. A.
Hassan
, “Linear instability of viscoelastic nanofluid microjet with the effect of Marangoni convection
,” Phys. Scr.
94
, 025701
(2019
). 30.
Z.
Chaich
, S.
Saouli
, and I.
Rezayguia
, “Thermodynamic analysis of viscoelastic fluid in a porous medium with presecribed wall heat flux over stretching sheet subjected to a transitive magnetic field
,” Therm. Sci.
23
, 219
(2019
). 31.
G. R.
Kefayati
, G. R.
Kefayati
, H.
Tang
, A.
Chan
, and X.
Wang
, “A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media
,” Comput. Fluids
176
, 226
(2018
). 32.
S.
Kondo
, H.
Gotod
, T.
Miyano
, and I. T.
Tokuda
, “Chaotic dynamics of large-scale double-diffusive convection in a porous medium
,” Phys. D Nonlinear Phenom.
364
, 1
(2018
). 33.
M. M.
Khader
and S.
Mziou
, “Chebyshev spectral method for studying the viscoelastic slip flow due to a permeable stretching surface embedded in a porous medium with viscous dissipation and non-uniform heat generation
,” Boundary Value Prob.
2017
, 37
(2017
). 34.
I. S.
Shivakumara
, M.
Dhananjaya
, and C.-O.
Ng
, “Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer
,” Int. J. Heat Mass Transf.
84
, 167
(2015
). 35.
J. A. C.
Gallas
, “Structure of the parameter space of the Hénon map
,” Phys. Rev. Lett.
70
, 2714
(1993
). 36.
J. A. C.
Gallas
, “Stability diagrams for a memristor oscillator
,” Eur. Phys. J. Spec. Top.
228
, 2081
(2019
), and references therein. 37.
T.
Tang
and H. H.
Bau
, “Stabilization of the no-motion state in the Rayleigh-Bénard problem
,” Proc. R. Soc. Lond. A
447
, 587
(1994
). 38.
H. H.
Bau
, “Control of Marangoni-Bénard convection
,” Int. J. Heat Mass Transf.
42
, 1327
(1999
). 39.
L.
Storesletten
, D.
Andrew
, and S.
Rees
, “The onset of convection in a viscoelastic liquid saturated anisotropic porous layer
,” Transp. Porous Media
67
, 203
(2007
). 40.
L. J.
Sheu
, L.-M.
Tam
, J. H.
Chen
, H. K.
Chen
, and Y. K.
Lin
, “Chaotic convection of viscoelastic fluids in porous media
,” Chaos Solitons Fractals
37
, 113
(2008
). 41.
J.
Vadasz
, J. E. A.
Roy-Aikins
, and P.
Vadasz
, “Sudden or smooth transitions in porous media natural convection
,” Int. J. Heat Mass Transf.
48
, 1096
(2005
).42.
P.
Vadasz
, J. H.
Chen
, H. K.
Chen
, and Y. K.
Lin
, “Instability and route to chaos in porous media convection
,” Fluids
2
, 26
(2017
). 43.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
(1963
). 44.
C.
Sparrow
, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
, 2nd ed. (Springer
, Germany
, 1982
).45.
P. G.
Siddheshwar
, G. N.
Sekhar
, and G.
Jayalatha
, “Effect of time-periodic vertical oscillations of the Rayleigh-Bérnard system on nonlinear convection in viscoelastic liquids
,” J. Nonnewton. Fluid Mech.
165
, 1412
(2010
). 46.
M.
Narayana
, P.
Sibanda
, P. G.
Siddheshwar
, and G.
Jayalatha
, “Linear and nonlinear stability analysis of binary viscoelastic fluid convection
,” Appl. Math. Model.
37
(16–17
), 8162
–8178
(2013
). 47.
A.
Wolf
, J. B.
Swift
, H. L.
Swinney
, and J. A.
Vastano
, “Determining Lyapunov exponents from a time series
,” Physica D
, 16
, 285
(1985
).48.
J. C.
Sprott
, Chaos and Time-Series Analysis
(Oxford University Press
, Oxford, UK
, 2003
).49.
O. E.
Rössler
, “An equation for hyperchaos
,” Phys. Lett. A
71
, 155
(1979
). 50.
Q.
Jia
, “Hyperchaos generated from the Lorenz chaotic system and its control
,” Phys. Lett. A
366
, 217
(2007
). 51.
D.
Urzagasti
, D.
Becerra-Alonso
, L. M.
Pérez
, H. L.
Mancini
, and D.
Laroze
, “Hyper-chaotic magnetisation dynamics of two interacting dipoles
,” J. Low Temp. Phys.
181
, 211
(2015
). 52.
D.
Laroze
, J.
Bragard
, O. J.
Suarez
, and H.
Pleiner
, “Characterization of the chaotic magnetic particle dynamics
,” IEEE Trans. Mag.
47
, 3032
(2011
). 53.
D.
Laroze
, D.
Becerra-Alonso
, J. A. C.
Gallas
, and H.
Pleiner
, “Magnetization dynamics under a quasiperiodic magnetic field
,” IEEE Trans. Mag.
48
, 3567
(2012
). 54.
C.
Kanchana
, Y.
Zhao
, and P. G.
Siddheshwar
, “A comparative study of individual influences of suspended multiwalled carbon nanotubes and alumina nanoparticles on Rayleigh-Benard convection in water
,” Phys. Fluids
30
, 084101
(2018
). 55.
G. C.
Layek
and N. C.
Pati
, “Bifurcations and hyperchaos in magnetoconvection of non-Newtonian fluids
,” Int. J. Bifurcat. Chaos
28
, 1830034
(2018
). 56.
D.
Laroze
, P. G.
Siddheshwar
, and H.
Pleiner
, “Chaotic convection in a ferrofluid
,” Commun. Nonlinear Sci. Numer. Simul.
18
, 2436
(2013
). 57.
G. C.
Layek
and N. C.
Pati
, “Bifurcations and chaos in convection taking non-Fourier heat-flux
,” Phys. Lett. A
381
, 3568
(2017
). 58.
J. G.
Freire
and J. A. C.
Gallas
, “Stern-Brocot trees in the periodicity of mixed-mode oscillations
,” Phys. Chem. Chem. Phys.
13
, 12191
(2011
). 59.
J.
Park
, H.
Lee
, Y.
Jeon
, and J.
Baik
, “Periodicity of the Lorenz-Stenflo equations
,” Phys. Scr.
90
, 065201
(2015
). 60.
P. C.
Rech
, “Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model
,” J. Math. Chem.
57
, 632
–637
(2019
).61.
D.
Roy
and Z. E.
Musielak
, “Generalized Lorenz models and their routes to chaos. III. Energy-conserving horizontal and vertical mode truncations
,” Chaos Solitons Fractals
33
, 1064
–1070
(2007
); D.
Roy
andZ. E.
Musielak
“Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations
,” ibid.
31
, 747
–756
(2007
); D.
Roy
and Z. E.
Musielak
“Generalized Lorenz models and their routes to chaos. I. Energy-conserving vertical mode truncations
,” ibid.
32
, 1038
–1052
(2007
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.