We study the impact of deserting a pre-established path, determined by a navigation software, on the overall city traffic. To do so, we consider a cellular automaton model for vehicular traffic, where the cars travel between two randomly assigned points in the city following three different navigation strategies based on the minimization of the individual paths or travel times. We found, in general, that, above a critical car density, the transport improves in all strategies if we decrease the time that the vehicles persist in trying to follow a particular strategy when a route is blocked, namely, the mean flux increases, the individual travel times decrease, and the fluctuations of density in the streets decrease; consequently, deserting helps prevent traffic jams.

1.
B.
Toledo
,
V.
Munoz
,
J.
Rogan
,
C.
Tenreiro
, and
J. A.
Valdivia
, “
Modeling traffic through a sequence of traffic lights
,”
Phys. Rev. E
70
,
016107
(
2004
).
2.
R. O.
Medina
,
J.
Rogan
,
M.
Ramirez
,
B. A.
Toledo
, and
J. A.
Valdivia
, “
Modeling interacting city traffic with finite acceleration and braking capacities
,”
Chaos
29
,
093136
(
2019
).
3.
B. A.
Toledo
,
E.
Cerda
,
J.
Rogan
,
V.
Muñoz
,
C.
Tenreiro
,
R.
Zarama
, and
J. A.
Valdivia
, “
Universal and nonuniversal features in a model of city traffic
,”
Phys. Rev. E
75
,
026108
(
2007
).
4.
A.
Adewumi
,
J.
Kagamba
, and
A.
Alochukwu
, “
Application of chaos theory in the prediction of motorised traffic flows on urban networks
,”
Math. Prob. Eng.
2016
,
5656734
.
5.
J. M.
Kleinberg
, “
Navigation in a small world
,”
Nature
406
,
845
(
2000
).
6.
M.
Boguna
,
D.
Krioukov
, and
K. C.
Claffy
, “
Navigability of complex networks
,”
Nat. Phys.
5
,
74
(
2009
).
7.
M.
Boguná
and
D.
Krioukov
, “
Navigating ultrasmall worlds in ultrashort time
,”
Phys. Rev. Lett.
102
,
058701
(
2009
).
8.
S. H.
Lee
and
P.
Holme
, “
Pathlength scaling in graphs with incomplete navigational information
,”
Physica A
390
,
3996
4001
(
2011
).
9.
P.
Echenique
,
J.
Gómez-Gardenes
, and
Y.
Moreno
, “
Dynamics of jamming transitions in complex networks
,”
Europhys. Lett.
71
,
325
(
2005
).
10.
S.
Meloni
and
J.
Gómez-Gardeñes
, “
Local empathy provides global minimization of congestion in communication networks
,”
Phys. Rev. E
82
,
056105
(
2010
).
11.
H.
Calisto
,
F.
Mora
, and
E.
Tirapegui
, “
Stochastic resonance in a linear system: An exact solution
,”
Phys. Rev. E
74
,
022102
(
2006
).
12.
D.
Braess
, “
Über ein paradoxon aus der verkehrsplanung
,”
Unternehmensforschung
12
,
258
268
(
1968
).
13.
H.
Youn
,
M. T.
Gastner
, and
H.
Jeong
, “
Price of anarchy in transportation networks: Efficiency and optimality control
,”
Phys. Rev. Lett.
101
,
128701
(
2008
).
14.
A.
Rose
,
R.
O’Dea
, and
K. I.
Hopcraft
, “
Price of anarchy on heterogeneous traffic-flow networks
,”
Phys. Rev. E
94
,
032315
(
2016
).
15.
B.
Danila
,
Y.
Yu
,
J. A.
Marsh
, and
K. E.
Bassler
, “
Optimal transport on complex networks
,”
Phys. Rev. E
74
,
046106
(
2006
).
16.
B.
Danila
,
Y.
Yu
,
S.
Earl
,
J. A.
Marsh
,
Z.
Toroczkai
, and
K. E.
Bassler
, “
Congestion-gradient driven transport on complex networks
,”
Phys. Rev. E
74
,
046114
(
2006
).
17.
M.
Tang
and
T.
Zhou
, “
Efficient routing strategies in scale-free networks with limited bandwidth
,”
Phys. Rev. E
84
,
026116
(
2011
).
18.
J.
Clark
,
F.
Torres
,
J.
Rogan
, and
J. A.
Valdivia
, “
Generalization of the Ehrenfest urn model to a complex network
,”
Phys. Rev. E
92
,
012103
(
2015
).
19.
P.
Medina
,
J.
Clark
,
M.
Kiwi
,
F.
Torres
,
J.
Rogan
, and
J. A.
Valdivia
, “
The stochastic transport dynamics of a conserved quantity on a complex network
,”
Sci. Rep.
8
,
14288
(
2018
).
20.
D.
Chowdhury
and
A.
Schadschneider
, “
Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods
,”
Phys. Rev. E
59
,
R1311
(
1999
).
21.
A.
Schadschneider
,
D.
Chowdhury
,
E.
Brockfeld
,
K.
Klauck
,
L.
Santen
, and
J.
Zittartz
, “
A new cellular automaton model for city traffic
,”
Traffic Granular Flow
99
,
437
442
(
2000
).
22.
E.
Brockfeld
,
R.
Barlovic
,
A.
Schadschneider
, and
M.
Schreckenberg
, “
Optimizing traffic lights in a cellular automaton model for city traffic
,”
Phys. Rev. E
64
,
056132
(
2001
).
23.
O.
Biham
,
A. A.
Middleton
, and
D.
Levine
, “
Self-organization and a dynamical transition in traffic-flow models
,”
Phys. Rev. A
46
,
R6124
(
1992
).
24.
K.
Nagel
and
M.
Schreckenberg
, “
A cellular automaton model for freeway traffic
,”
J. Phys. I
2
,
2221
2229
(
1992
).
25.
T.
Nagatani
, “
Traffic flow on percolation-backbone fractal
,”
Chaos Soliton. Fract.
135
,
109771
(
2020
).
26.
B. S.
Kerner
, “
Statistical physics of synchronized traffic flow: Spatiotemporal competition between sf and sj instabilities
,”
Phys. Rev. E
100
,
012303
(
2019
).
27.
J.
Tanimoto
and
X.
An
, “
Improvement of traffic flux with introduction of a new lane-change protocol supported by intelligent traffic system
,”
Chaos Soliton. Fract.
122
,
1
5
(
2019
).
You do not currently have access to this content.