We investigate analytically and numerically the stability of bubble-like fluxons in disk-shaped heterogeneous Josephson junctions. Using ring solitons as a model of bubble fluxons in the two-dimensional sine-Gordon equation, we show that the insertion of coaxial dipole currents prevents their collapse. We characterize the onset of instability by introducing a single parameter that couples the radius of the bubble fluxon with the properties of the injected current. For different combinations of parameters, we report the formation of stable oscillating bubbles, the emergence of internal modes, and bubble breakup due to internal mode instability. We show that the critical germ depends on the ratio between its radius and the steepness of the wall separating the different phases in the system. If the steepness of the wall is increased (decreased), the critical radius decreases (increases). Our theoretical findings are in good agreement with numerical simulations.

1.
J.
Cuevas-Maraver
,
P.
Kevrekidis
, and
F.
Williams
,
The Sine-Gordon Model and its Applications
(
Springer International Publishing
,
2014
).
2.
A. V.
Ustinov
,
T.
Doderer
,
R. P.
Huebener
,
N. F.
Pedersen
,
B.
Mayer
, and
V. A.
Oboznov
, “
Dynamics of sine-Gordon solitons in the annular Josephson junction
,”
Phys. Rev. Lett.
69
,
1815
1818
(
1992
).
3.
A.
Ustinov
, “
Solitons in Josephson junctions
,”
Physica D
123
,
315
329
(
1998
).
4.
C.
Gorria
,
Y. B.
Gaididei
,
M. P.
Soerensen
,
P. L.
Christiansen
, and
J. G.
Caputo
, “
Kink propagation and trapping in a two-dimensional curved Josephson junction
,”
Phys. Rev. B
69
,
134506
(
2004
).
5.
S.
Lin
and
X.
Hu
, “
Possible dynamic states in inductively coupled intrinsic Josephson junctions of layered high-Tc superconductors
,”
Phys. Rev. Lett.
100
,
247006
(
2008
).
6.
M. G.
Clerc
,
S.
Coulibaly
, and
D.
Laroze
, “
Localized states beyond the asymptotic parametrically driven amplitude equation
,”
Phys. Rev. E
77
,
056209
(
2008
).
7.
E.
Berrios-Caro
,
M. G.
Clerc
, and
A. O.
Leon
, “
Flaming 2π kinks in parametrically driven systems
,”
Phys. Rev. E
94
,
052217
(
2016
).
8.
M.
Blaauboer
,
B. A.
Malomed
, and
G.
Kurizki
, “
Spatiotemporally localized multidimensional solitons in self-induced transparency media
,”
Phys. Rev. Lett.
84
,
1906
1909
(
2000
).
9.
H.
Leblond
and
D.
Mihalache
, “
Few-optical-cycle solitons: Modified Korteweg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models
,”
Phys. Rev. A
79
,
063835
(
2009
).
10.
F.
Geniet
and
J.
Leon
, “
Energy transmission in the forbidden band gap of a nonlinear chain
,”
Phys. Rev. Lett.
89
,
134102
(
2002
).
11.
O. M.
Braun
and
Y.
Kivshar
,
The Frenkel–Kontorova Model
(
Springer-Verlag
,
Berlin
,
2004
).
12.
K.
Alfaro-Bittner
,
M. G.
Clerc
,
M. A.
García-Ñustes
, and
R. G.
Rojas
, “
π-kink propagation in the damped Frenkel–Kontorova model
,”
Europhys. Lett.
119
,
40003
(
2017
).
13.
A. V.
Ustinov
, “
Fluxon insertion into annular Josephson junctions
,”
Appl. Phys. Lett.
80
,
3153
3155
(
2002
).
14.
B. A.
Malomed
and
A. V.
Ustinov
, “
Creation of classical and quantum fluxons by a current dipole in a long Josephson junction
,”
Phys. Rev. B
69
,
064502
(
2004
).
15.
R.
Menditto
,
M.
Merker
,
M.
Siegel
,
D.
Koelle
,
R.
Kleiner
, and
E.
Goldobin
, “
Evidence of macroscopic quantum tunneling from both wells in a φ Josephson junction
,”
Phys. Rev. B
98
,
024509
(
2018
).
16.
L. G.
Aslamazov
and
E. V.
Gurovich
, “
Pinning of solitons by Abrikosov vortices in distributed Josephson junctions
,”
JETP Lett.
40
,
746
749
(
1984
).
17.
E. V.
Gurovich
and
V. G.
Mikhalev
, “
Interaction between breathers and fluxon “bundles” with microshorts, Abrikosov vortices, and local currents in distributed Josephson junctions
,”
Zh. Eksp. Teor. Fiz.
93
,
1293
1298
(
1987
).
18.
R.
Fehrenbacher
,
V. B.
Geshkenbein
, and
G.
Blatter
, “
Pinning phenomena and critical currents in disordered long Josephson junctions
,”
Phys. Rev. B
45
,
5450
5467
(
1992
).
19.
D. R.
Gulevich
and
F. V.
Kusmartsev
, “
Flux cloning in Josephson transmission lines
,”
Phys. Rev. Lett.
97
,
017004
(
2006
).
20.
D. R.
Gulevich
and
F. V.
Kusmartsev
, “
New phenomena in long Josephson junctions
,”
Supercond. Sci. Technol.
20
,
S60
(
2007
).
21.
R.
Monaco
and
J.
Mygind
, “
Fluxon dynamics in elliptic annular Josephson junctions
,”
J. Low Temp. Phys.
183
,
1
13
(
2016
).
22.
K.
O’Brien
,
C.
Macklin
,
I.
Siddiqi
, and
X.
Zhang
, “
Resonant phase matching of Josephson junction traveling wave parametric amplifiers
,”
Phys. Rev. Lett.
113
,
157001
(
2014
).
23.
C.
Macklin
,
K.
O’Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near-quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
24.
T.
Fujii
,
T.
Shibata
,
M.
Nishida
, and
N.
Hatakenaka
, “
Flying superconducting qubits
,”
IEEE Trans. Appl. Supercond.
17
,
97
100
(
2007
).
25.
D.
Kafri
,
P.
Adhikari
, and
J. M.
Taylor
, “
Dynamics of an ion coupled to a parametric superconducting circuit
,”
Phys. Rev. A
93
,
013412
(
2016
).
26.
F.
Albarrán-Arriagada
,
L.
Lamata
,
E.
Solano
,
G.
Romero
, and
J. C.
Retamal
, “
Spin-1 models in the ultrastrong-coupling regime of circuit QED
,”
Phys. Rev. A
97
,
022306
(
2018
).
27.
C.
Guarcello
,
P.
Solinas
,
A.
Braggio
, and
F.
Giazotto
, “
Phase-coherent solitonic Josephson heat oscillator
,”
Sci. Rep.
8
,
12287
(
2018
).
28.
C.
Guarcello
,
P.
Solinas
,
A.
Braggio
, and
F.
Giazotto
, “
Solitonic thermal transport in a current-biased long Josephson junction
,”
Phys. Rev. B
98
,
104501
(
2018
).
29.
S.-Y.
Hwang
,
F.
Giazotto
, and
B.
Sothmann
, “
Phase-coherent heat circulator based on multi-terminal Josephson junctions
,”
Phys. Rev. Appl.
10
,
044062
(
2018
).
30.
C.
Guarcello
,
A.
Braggio
,
P.
Solinas
, and
F.
Giazotto
, “
Nonlinear critical-current thermal response of an asymmetric Josephson tunnel junction
,”
Phys. Rev. Appl.
11
,
024002
(
2019
).
31.
M.
Peyrard
and
T.
Dauxois
,
Physique des Solitons
(
Savoirs actuels
,
2004
).
32.
J. A.
González
,
A.
Bellorín
, and
L. E.
Guerrero
, “
Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations
,”
Phys. Rev. E
65
,
065601(R)
(
2002
).
33.
J. A.
González
,
A.
Bellorín
, and
L. E.
Guerrero
, “
How to excite the internal modes of sine-Gordon solitons
,”
Chaos Soliton. Fract.
17
,
907
919
(
2003
).
34.
M. A.
García-Ñustes
,
J. F.
Marín
, and
J. A.
González
, “
Bubblelike structures generated by activation of internal shape modes in two-dimensional sine-Gordon line solitons
,”
Phys. Rev. E
95
,
032222
(
2017
).
35.
J.
Geicke
, “
Cylindrical pulsons in nonlinear relativistic wave equations
,”
Phys. Scr.
29
,
431
434
(
1984
).
36.
P. L.
Christiansen
,
N.
Grønbech-Jensen
,
P. S.
Lomdahl
, and
B. A.
Malomed
, “
Oscillations of eccentric pulsons
,”
Phys. Scr.
55
,
131
134
(
1997
).
37.
S.
Ahmad
,
H.
Susanto
,
J. A. D.
Wattis
, and
E.
Goldobin
, “
Existence and stability analysis of semifluxons in disk-shaped two-dimensional 0--π Josephson junctions
,”
Phys. Rev. B
82
,
174504
(
2010
).
38.
P. G.
Kevrekidis
,
I.
Danaila
,
J.-G.
Caputo
, and
R.
Carretero-González
, “
Planar and radial kinks in nonlinear Klein–Gordon models: Existence, stability, and dynamics
,”
Phys. Rev. E
98
,
052217
(
2018
).
39.
J. F.
Marín
, “
Generation of soliton bubbles in a sine-Gordon system with localised inhomogeneities
,”
J. Phys. Conf. Ser.
1043
,
012001
(
2018
).
40.
J. A.
González
,
A.
Bellorín
,
M. A.
García-Ñustes
,
L.
Guerrero
,
S.
Jiménez
,
J. F.
Marín
, and
L.
Vázquez
, “
Fate of the true-vacuum bubbles
,”
J. Cosmol. Astropart. Phys.
2018
,
033
(
2018
).
41.
M.
Kamranian
,
M.
Dehghan
, and
M.
Tatari
, “
Study of the two-dimensional sine-Gordon equation arising in Josephson junctions using meshless finite point method
,”
Int. J. Numer. Model. El.
30
,
e2210
(
2017
).
42.
S.
Johnson
,
P.
Suarez
, and
A.
Biswas
, “
New exact solutions for the sine-Gordon equation in 2 + 1 dimensions
,”
Comput. Math. Math. Phys.
52
,
98
104
(
2012
).
43.
J. T.
Giblin
,
L.
Hui
,
E. A.
Lim
, and
I. S.
Yang
, “
How to run through walls: Dynamics of bubble and soliton collisions
,”
Phys. Rev. D
82
,
045019
(
2010
).
44.
A.
Barone
and
G.
Paternò
,
Physics and Applications of the Josephson Effect
(
Wiley
,
1982
).
45.
B. A.
Malomed
, “The sine-Gordon model: General background, physical motivations, inverse scattering, and solitons,” in The Sine-Gordon Model and Its Applications, Nonlinear Systems and Complexity Vol. 10, edited by F. Williams, J. Cuevas-Maraver, and P. Kevrekidis (Springer International Publishing, 2014), Chap. 1.
46.
B. A.
Malomed
, “
Dynamics of quasi-one-dimensional kinks in the two-dimensional sine-Gordon model
,”
Physica D
52
,
157
170
(
1991
).
47.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer-Verlag
,
New York
,
1986
).
48.
W.
van Saarloos
and
P. C.
Hohenberg
, “
Pulses and fronts in the complex Ginzburg–Landau equation near a subcritical bifurcation
,”
Phys. Rev. Lett.
64
,
749
752
(
1990
).
49.
P. L.
Christiansen
and
P. S.
Lomdahl
, “
Numerical study of 2 + 1 dimensional sine-Gordon solitons
,”
Physica D
2
,
482
494
(
1981
).
50.
J.
González
,
A.
Marcano
,
B.
Mello
, and
L.
Trujillo
, “
Controlled transport of solitons and bubbles using external perturbations
,”
Chaos Soliton. Fract.
28
,
804
821
(
2006
).
51.
P.
Christiansen
and
O.
Olsen
, “
Return effect for rotationally symmetric solitary wave solutions to the sine-Gordon equation
,”
Phys. Lett. A
68
,
185
188
(
1978
).
52.
P. L.
Christiansen
and
O. H.
Olsen
, “
Ring-shaped quasi-soliton solutions to the two- and three-dimensional sine-Gordon equation
,”
Phys. Scr.
20
,
531
538
(
1979
).
53.
I.
Barashenkov
,
A.
Gocheva
,
V.
Makhankov
, and
I.
Puzynin
, “
Stability of the soliton-like “bubbles”
,”
Physica D
34
,
240
254
(
1989
).
54.
I. V.
Barashenkov
and
E. Y.
Panova
, “
Stability and evolution of the quiescent and travelling solitonic bubbles
,”
Physica D
69
,
114
134
(
1993
).
55.
J. A.
González
and
J. A.
Hołyst
, “
Behavior of ϕ4 kinks in the presence of external forces
,”
Phys. Rev. B
45
,
10338
10343
(
1992
).
56.
S.
Flügge
,
Practical Quantum Mechanics
(
Springer Science & Business Media
,
2012
).
57.
J. A.
Hołyst
and
H.
Benner
, “
Universal family of kink-bearing models reconstructed from a Pöschl–Teller scattering potential
,”
Phys. Rev. B
43
,
11190
11196
(
1991
).
58.
M.
Peyrard
and
D. K.
Campbell
, “
Kink–antikink interactions in a modified sine-Gordon model
,”
Physica D
9
,
33
51
(
1983
).
59.
J. A.
González
,
S.
Cuenda
, and
A.
Sánchez
, “
Kink dynamics in spatially inhomogeneous media: The role of internal modes
,”
Phys. Rev. E
75
,
036611
(
2007
).
60.
J. A.
González
and
F. A.
Oliveira
, “
Nucleation theory, the escaping processes, and nonlinear stability
,”
Phys. Rev. B
59
,
6100
6105
(
1999
).
61.
A.
Filippov
,
Y.
Kuzovlev
, and
T.
Soboleva
, “
On the structure of critical nuclei at first-order phase transitions in 3D systems
,”
Phys. Lett. A
165
,
159
164
(
1992
).
62.
V. I.
Khvorostyanov
and
J. A.
Curry
, “
Thermodynamic theory of freezing and melting of water and aqueous solutions
,”
J. Phys. Chem. A
108
,
11073
11085
(
2004
).
63.
B.
Scheifele
,
I.
Saika-Voivod
,
R. K.
Bowles
, and
P. H.
Poole
, “
Heterogeneous nucleation in the low-barrier regime
,”
Phys. Rev. E
87
,
042407
(
2013
).
64.
J. J.
Mazo
and
A. V.
Ustinov
, “The sine-Gordon equation in Josephson-junction arrays,” in The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, edited by J. Cuevas-Maraver, P. G. Kevrekidis, and F. Williams (Springer International Publishing, Cham, 2014), pp. 155–175.

Supplementary Material

You do not currently have access to this content.