Spontaneous symmetry breaking, a spontaneous course of breaking the spatial symmetry (parity) of the system, is known to exist in many branches of physics, including condensed-matter physics, high-energy physics, nonlinear optics, and Bose–Einstein condensates. In recent years, the spontaneous symmetry breaking of solitons in nonlinear wave systems is broadly studied; understanding such a phenomenon in nonlinear fractional quantum mechanics with space fractional derivatives (the purely nonlinear fractional systems whose fundamental properties are governed by a nonlinear fractional Schrödinger equation), however, remains pending. Here, we survey symmetry breaking of solitons in fractional systems (with the fractional diffraction order being formulated by the Lévy index α) of a nonlinear double-well structure and find several kinds of soliton families in the forms of symmetric and anti-symmetric soliton states as well as asymmetric states. Linear stability and dynamical properties of these soliton states are explored relying on linear-stability analysis and direct perturbed simulations, with which the existence and stability regions of all the soliton families in the respective physical parameter space are identified.

1.
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, edited by B. A. Malomed (Springer, 2013).
2.
C. N.
Yang
, “
The spontaneous magnetization of a two-dimensional Ising model
,”
Phys. Rev.
85
,
808
816
(
1952
).
3.
P. W.
Higgs
, “
Broken symmetries and the masses of gauge bosons
,”
Phys. Rev. Lett.
13
,
508
509
(
1964
).
4.
Y.
Nambu
, “
Nobel lecture: Spontaneous symmetry breaking in particle physics: A case of cross fertilization
,”
Rev. Mod. Phys.
81
,
1015
1018
(
2009
).
5.
C.
Lee
, “
Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose-Einstein condensate
,”
Phys. Rev. Lett.
102
,
070401
(
2009
).
6.
T.
Zibold
,
E.
Nicklas
,
C.
Gross
, and
M. K.
Oberthaler
, “
Classical bifurcation at the transition from Rabi to Josephson dynamics
,”
Phys. Rev. Lett.
105
,
204101
(
2010
).
7.
J.
Li
,
A. K.
Harter
,
J.
Liu
,
L.
de Melo
,
Y. N.
Joglekar
, and
L.
Luo
, “
Observation of parity-time symmetry breaking transitions in a dissipative floquet system of ultracold atoms
,”
Nat. Commun.
105
,
204101
(
2019
).
8.
A.
Guo
,
G. L.
Salamo
,
D.
Duchesne
,
R.
Morandotti
,
M.
Volatier-Ravat
,
V.
Aimez
,
G. A.
Siviloglou
, and
D. N.
Christodoulides
, “
Observation of PT-symmetry breaking in complex optical potentials
,”
Phys. Rev. Lett.
103
,
093902
(
2009
).
9.
L.
Feng
,
Z. J.
Wong
,
R.-M.
Ma
,
Y.
Wang
, and
X.
Zhang
, “
Single-mode laser by parity-time symmetry breaking
,”
Science
346
,
972
975
(
2014
).
10.
A.
Alberucci
,
A.
Piccardi
,
N.
Kravets
,
O.
Buchnev
, and
G.
Assanto
, “
Soliton enhancement of spontaneous symmetry breaking
,”
Optica
9
,
783
789
(
2015
).
11.
P.
Hamel
,
S.
Haddadi
,
F.
Raineri
,
P.
Monnier
,
G.
Beaudoin
,
I.
Sagnes
,
A.
Levenson
, and
A. M.
Yacomotti
, “
Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers
,”
Nat. Photonics
9
,
311
315
(
2015
).
12.
Q.-T.
Cao
,
H.
Wang
,
C.-H.
Dong
,
H.
Jing
,
R.-S.
Liu
,
X.
Chen
,
L.
Ge
,
Q.
Gong
, and
Y.-F.
Xiao
, “
Experimental demonstration of spontaneous chirality in a nonlinear microresonator
,”
Phys. Rev. Lett.
118
,
033901
(
2017
).
13.
D.
Xu
,
Z.-Z.
Han
,
Y.-K.
Lu
,
Q.
Gong
,
C.-W.
Qiu
,
G.
Chen
, and
Y.-F.
Xiao
, “
Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking
,”
Adv. Photonics
1
,
046002
(
2019
).
14.
M.
Albiez
,
R.
Gati
,
J.
Fölling
,
S.
Hunsmann
,
M.
Cristiani
, and
M. K.
Oberthaler
, “
Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction
,”
Phys. Rev. Lett.
95
,
010402
(
2005
).
15.
M.
Liu
,
D. A.
Powell
,
I. V.
Shadrivov
,
M.
Lapine
, and
Y. S.
Kivshar
, “
Spontaneous chiral symmetry breaking in metamaterials
,”
Nat. Commun.
5
,
4441
(
2014
).
16.
A.
Trenkwalder
,
G.
Spagnolli
,
G.
Semeghini
,
S.
Coop
,
M.
Landini
,
P.
Castilho
,
L.
Pezze
,
G.
Modugno
,
M.
Inguscio
,
A.
Smerzi
, and
M.
Fattori
, “
Quantum phase transitions with parity-symmetry breaking and hysteresis
,”
Nat. Phys.
12
,
826
(
2016
).
17.
M.
Matuszewski
,
B. A.
Malomed
, and
M.
Trippenbach
, “
Spontaneous symmetry breaking of solitons trapped in a double-channel potential
,”
Phys. Rev. A
75
,
063621
(
2007
).
18.
T.
Mayteevarunyoo
,
B. A.
Malomed
, and
G.
Dong
, “
Spontaneous symmetry breaking in a nonlinear double-well structure
,”
Phys. Rev. A
76
,
053601
(
2008
).
19.
V. A.
Brazhnyi
and
B. A.
Malomed
, “
Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites
,”
Phys. Rev. A
83
,
053844
(
2011
).
20.
C. M.
de Sterke
,
I. V.
Kabakova
,
I.
Uddin
,
J.
Jeyaratnam
, and
B. A.
Malomed
, “
Spontaneous symmetry breaking in a double-defect nonlinear grating
,”
Phys. Rev. A
88
,
033825
(
2013
).
21.
N.
Dror
and
B. A.
Malomed
, “
Solitons and vortices in nonlinear potential wells
,”
J. Opt.
18
,
014003
(
2016
).
22.
D. A.
Zezyulin
,
M. E.
Lebedev
,
G. L.
Alfimov
, and
B. A.
Malomed
, “
Symmetry breaking in competing single-well linear-nonlinear potentials
,”
Phys. Rev. A
98
,
042209
(
2018
).
23.
J.
Yang
, “
Symmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials
,”
Opt. Lett.
39
,
5547
5550
(
2014
).
24.
J.
Yang
, “
Symmetry breaking with opposite stability between bifurcated asymmetric solitons in parity-time-symmetric potentials
,”
Opt. Lett.
44
,
2641
2644
(
2019
).
25.
L.
Dong
,
C.
Huang
, and
W.
Qi
, “
Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials
,”
Nonlinear Dyn.
98
,
1701
1708
(
2019
).
26.
N.
Laskin
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
).
27.
N.
Laskin
, “
Fractional quantum mechanics
,”
Phys. Rev. E
62
,
3135
(
2000
).
28.
N.
Laskin
, “
Fractional Schrödinger equation
,”
Phys. Rev. E
66
,
056108
(
2002
).
29.
Y.
Zhang
,
X.
Liu
,
M. R.
Belić
,
W.
Zhong
,
Y.
Zhang
, and
M.
Xiao
, “
Propagation dynamics of a light beam in a fractional Schrödinger equation
,”
Phys. Rev. Lett.
115
,
180403
(
2015
).
30.
Y.
Zhang
,
H.
Zhong
,
M. R.
Belić
,
Y.
Zhu
,
W.
Zhong
,
Y.
Zhang
,
D. N.
Christodoulides
, and
M.
Xiao
, “
PT symmetry in a fractional Schrödinger equation
,”
Laser Photon Rev.
10
,
526
531
(
2016
).
31.
W. P.
Zhong
,
M. R.
Belić
,
B. A.
Malomed
,
Y.
Zhang
, and
T.
Huang
, “
Spatiotemporal accessible solitons in fractional dimensions
,”
Phys. Rev. E
94
,
012216
(
2016
).
32.
L.
Zhang
,
C.
Li
,
H.
Zhong
,
C.
Xu
,
D.
Lei
,
Y.
Li
, and
D.
Fan
, “
Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: From linear to nonlinear regimes
,”
Opt. Express
24
,
14406
14418
(
2016
).
33.
L.
Zhang
,
Z.
He
,
C.
Conti
,
Z.
Wang
,
Y.
Hu
,
D.
Lei
,
Y.
Li
, and
D.
Fan
, “
Modulational instability in fractional nonlinear Schrödinger equation
,”
Commun. Nonlinear Sci. Numer. Simul.
48
,
531
540
(
2017
).
34.
L.
Zhang
,
X.
Zhang
,
H.
Wu
,
C.
Li
,
D.
Pierangeli
, and
D.
Fan
, “
Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation
,”
Opt. Express
27
,
27936
27945
(
2019
).
35.
C.
Huang
and
L.
Dong
, “
Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice
,”
Opt. Lett.
41
,
5636
5639
(
2016
).
36.
X.
Yao
and
X.
Liu
, “
Off-site and on-site vortex solitons in space-fractional photonic lattices
,”
Opt. Lett.
43
,
5749
5752
(
2018
).
37.
X.
Yao
and
X.
Liu
, “
Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential
,”
Photonics Res.
6
,
875
879
(
2018
).
38.
M.
Chen
,
S.
Zeng
,
D.
Lu
,
W.
Hu
, and
Q.
Guo
, “
Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity
,”
Phys. Rev. E
98
,
022211
(
2018
).
39.
M.
Chen
,
Q.
Guo
,
D.
Lu
, and
W.
Hu
, “
Variational approach for breathers in a nonlinear fractional Schrödinger equation
,”
Commun. Nonlinear Sci. Numer. Simul.
71
,
73
81
(
2019
).
40.
L.
Zeng
and
J.
Zeng
, “
One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: Nonlinear lattice
,”
Opt. Lett.
44
,
2661
2664
(
2019
).
41.
L.
Dong
,
C.
Huang
, and
W.
Qi
, “
Nonlocal solitons in fractional dimensions
,”
Opt. Lett.
44
,
4917
4920
(
2019
).
42.
J.
Xie
,
X.
Zhu
, and
Y.
He
, “
Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices
,”
Nonlinear Dyn.
97
,
1287
1294
(
2019
).
43.
L.
Zeng
and
J.
Zeng
, “
One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential
,”
Nonlinear Dyn.
98
,
985
995
(
2019
).
44.
L.
Zeng
and
J.
Zeng
, “
Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities
,”
Commun. Phys.
3
,
26
(
2020
).
45.
J.
Shi
and
J.
Zeng
, “
1D solitons in saturable nonlinear media with space fractional derivatives
,”
Ann. Phys.
532
,
1900385
(
2020
).
46.
Y. V.
Kartashov
,
B. A.
Malomed
, and
L.
Torner
, “
Solitons in nonlinear lattices
,”
Rev. Mod. Phys.
83
,
247
305
(
2011
).
47.
X.
Gao
and
J.
Zeng
, “
Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices
,”
Front. Phys.
13
,
130501
(
2018
).
48.
J.
Shi
,
J.
Zeng
, and
B. A.
Malomed
, “
Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices
,”
Chaos
28
,
075501
(
2018
).
49.
J.
Shi
and
J.
Zeng
, “
Self-trapped spatially localized states in combined linear-nonlinear periodic potentials
,”
Front. Phys.
15
,
12602
(
2020
).
50.
J.
Chen
and
J.
Zeng
, “
One-dimensional localized modes of spin-orbit-coupled Bose-Einstein condensates with spatially periodic modulated atom-atom interactions: Nonlinear lattices
,”
Commun. Nonlinear Sci. Numer. Simul.
85
,
105217
(
2020
).
51.
S.
Longhi
, “
Fractional Schrödinger equation in optics
,”
Opt. Lett.
40
,
1117
1120
(
2015
).
52.
F.
Pinsker
,
W.
Bao
,
Y.
Zhang
,
H.
Ohadi
,
A.
Dreismann
, and
J. J.
Baumberg
, “
Fractional quantum mechanics in polariton condensates with velocity-dependent mass
,”
Phys. Rev. B
92
,
195310
(
2015
).
53.
K.
Staliunas
,
R.
Herrero
, and
G. J.
de Valcárcel
, “
Subdiffractive band-edge solitons in Bose-Einstein condensates in periodic potentials
,”
Phys. Rev. E
73
,
065603
(
2006
).
54.
L.
Zeng
and
J.
Zeng
, “
Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices
,”
Adv. Photonics
1
,
046006
(
2019
).
55.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
Philadelphia
,
2010
).
56.
J.
Yang
and
T. I.
Lakoba
, “
Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations
,”
Stud. Appl. Math.
118
,
153
(
2007
).
57.
P.
Li
,
B. A.
Malomed
, and
D.
Mihalache
, “
Symmetry breaking of spatial Kerr solitons in fractional dimension
,”
Chaos Solitons Fractals
132
,
109602
(
2020
).
You do not currently have access to this content.