Chimera state refers to the coexistence of coherent and non-coherent phases in identically coupled dynamical units found in various complex dynamical systems. Identification of chimera, on one hand, is essential due to its applicability in various areas including neuroscience and, on the other hand, is challenging due to its widely varied appearance in different systems and the peculiar nature of its profile. Therefore, a simple yet universal method for its identification remains an open problem. Here, we present a very distinctive approach using machine learning techniques to characterize different dynamical phases and identify the chimera state from given spatial profiles generated using various different models. The experimental results show that the performance of the classification algorithms varies for different dynamical models. The machine learning algorithms, namely, random forest, oblique random forest based on Tikhonov, axis-parallel split, and null space regularization achieved more than 96% accuracy for the Kuramoto model. For the logistic maps, random forest and Tikhonov regularization based oblique random forest showed more than 90% accuracy, and for the Hénon map model, random forest, null space, and axis-parallel split regularization based oblique random forest achieved more than 80% accuracy. The oblique random forest with null space regularization achieved consistent performance (more than 83% accuracy) across different dynamical models while the auto-encoder based random vector functional link neural network showed relatively lower performance. This work provides a direction for employing machine learning techniques to identify dynamical patterns arising in coupled non-linear units on large-scale and for characterizing complex spatiotemporal patterns in real-world systems for various applications.

1.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
(
4
),
380
385
(
2002
), see http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
2.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
(
17
),
174102
(
2004
).
3.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
,
Chaos
26
(
9
),
094801
(
2016
).
4.
K.
Bansal
,
J. O.
Garcia
,
S. H.
Tompson
,
T.
Verstynen
,
J. M.
Vettel
, and
S. F.
Muldoon
,
Sci. Adv.
5
(
4
),
8535
(
2019
).
5.
T.
Chouzouris
,
I.
Omelchenko
,
A.
Zakharova
,
J.
Hlinka
,
P.
Jiruska
, and
E.
Schöll
,
Chaos
28
,
045112
(
2018
).
6.
S.
Ghosh
and
S.
Jalan
,
Int. J. Bifurcat. Chaos
26
(
07
),
1650120
(
2016
).
7.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
106
(
23
),
234102
(
2011
).
8.
B. K.
Bera
,
D.
Ghosh
, and
M.
Lakshmanan
,
Phys. Rev. E
93
(
1
),
012205
(
2016
).
9.
S. R.
Ujjwal
and
R.
Ramaswamy
,
Phys. Rev. E
88
(
3
),
032902
(
2013
).
10.
C.
Meena
,
K.
Murali
, and
S.
Sinha
,
Int. J. Bifurcat. Chaos
26
(
09
),
1630023
(
2016
).
11.
G. I.
Strelkova
,
T. E.
Vadivasova
, and
V. S.
Anishchenko
,
Reg. Chaotic Dyn.
23
(
7–8
),
948
960
(
2018
).
12.
N.
Semenova
,
A.
Zakharova
,
E.
Schöll
, and
V.
Anishchenko
,
Europhys. Lett.
112
(
4
),
40002
(
2015
).
13.
P.
Kumar
,
D. K.
Verma
, and
P.
Parmananda
,
Phys. Lett. A
381
(
29
),
2337
2343
(
2017
).
14.
N.
Lazarides
,
G.
Neofotistos
, and
G.
Tsironis
,
Phys. Rev. B
91
(
5
),
054303
(
2015
).
15.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriére
, and
O.
Hallatschek
,
Proc. Natl. Acad. Sci. U.S.A.
110
(
26
),
10563
10567
(
2013
).
16.
S.
Nkomo
,
M. R.
Tinsley
, and
K.
Showalter
,
Phys. Rev. Lett.
110
(
24
),
244102
(
2013
).
17.
M. J.
Panaggio
and
D. M.
Abrams
,
Nonlinearity
28
(
3
),
67
(
2015
).
18.
E.
Schöll
,
Eur. Phys. J. Spec. Top.
225
(
6–7
),
891
919
(
2016
).
19.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
90
(
3
),
032920
(
2014
).
20.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
,
Phys. Rev. Lett.
112
(
15
),
154101
(
2014
).
21.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
,
Phys. Rev. Lett.
101
(
8
),
084103
(
2008
).
22.
J.
Xie
,
E.
Knobloch
, and
H.-C.
Kao
,
Phys. Rev. E
90
(
2
),
022919
(
2014
).
23.
L.
Schmidt
and
K.
Krischer
,
Chaos
25
(
6
),
064401
(
2015
).
24.
C. R.
Laing
,
Physica D
238
(
16
),
1569
1588
(
2009
).
25.
A.
Schmidt
,
T.
Kasimatis
,
J.
Hizanidis
,
A.
Provata
, and
P.
Hövel
,
Phys. Rev. E
95
,
032224
(
2017
).
26.
J.
Hizanidis
,
N.
Lazarides
, and
G. P.
Tsironis
,
Chaos
30
,
013115
(
2020
).
27.
Y.
Maistrenko
,
O.
Sudakov
,
O.
Osiv
, and
V.
Maistrenko
,
New J. Phys.
17
(
7
),
073037
(
2015
).
28.
T.
Kasimatis
,
J.
Hizanidis
, and
A.
Provata
,
Phys. Rev. E
97
,
052213
(
2018
).
29.
C. R.
Laing
,
Phys. Rev. E
92
(
5
),
050904
(
2015
).
30.
G. C.
Sethia
and
A.
Sen
,
Phys. Rev. Lett.
112
(
14
),
144101
(
2014
).
31.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
,
Sci. Rep.
6
,
23000
(
2016
).
32.
F. P.
Kemeth
,
S. W.
Haugland
,
L.
Schmidt
,
I. G.
Kevrekidis
, and
K.
Krischer
,
Chaos
26
(
9
),
094815
(
2016
).
33.
R.
Gopal
,
V.
Chandrasekar
,
A.
Venkatesan
, and
M.
Lakshmanan
,
Phys. Rev. E
89
(
5
),
052914
(
2014
).
34.
M.
Wolfrum
,
O. E.
Omel’chenko
,
S.
Yanchuk
, and
Y. L.
Maistrenko
,
Chaos
21
(
1
),
013112
(
2011
).
35.
I.
Omelchenko
,
E.
Omel’chenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
110
(
22
),
224101
(
2013
).
36.
J.
Hizanidis
,
N.
E.Kouvaris
,
G.
Zamora López
,
A.
Díaz Guilera
, and
C. G.
Antonopoulos
,
Sci. Rep.
6
,
19845
(
2016
).
37.
T. M.
Mitchell
,
Machine Learning
, 1st ed. (
McGraw Hill Education
,
2017
).
38.
A.
Burkov
,
The Hundred-Page Machine Learning Book
, 1st ed. (
A. Burkov
,
2019
)
ISBN-13: 978-1999579500
.
39.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
,
Chaos
28
,
061104
(
2018
).
40.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
,
Chaos
27
,
121102
(
2017
).
41.
J.
Pathak
et al.,
Chaos
28
,
041101
(
2018
).
42.
F. A.
Rodrigues
et al., arXiv:1910.00544 (2019).
43.
G.
Neofotistos
et al.,
Front. Phys.
7
,
24
(
2019
).
44.
J. D.
Hart
,
L.
Larger
,
T. E.
Murphy
, and
R.
Roy
,
Philos. Trans. R. Soc. A
377
(
2153
),
20180123
(
2019
).
45.
G. D.
Barmparis
et al.,
Phys. Lett. A
384
(
15
),
126300
(
2020
).
46.
M.
Fernández-Delgado
,
E.
Cernadas
,
S.
Barro
, and
D.
Amorim
,
J. Mach. Learn. Res.
15
(
90
),
3133
3181
(
2014
), see http://jmlr.org/papers/v15/delgado14a.html.
47.
L.
Breiman
,
Mach. Learn.
45
(
1
),
5
32
(
2001
).
48.
L.
Zhang
and
P. N.
Suganthan
,
IEEE Trans. Cybern.
45
(
10
),
2165
2176
(
2014
).
49.
M. A.
Ganaie
,
M.
Tanveer
, and
P. N.
Suganthan
,
Expert Syst. Appl.
143
,
113072
(
2020
).
50.
Y.
Zhang
,
J.
Wu
,
Z.
Cai
,
B.
Du
, and
S. Y.
Philip
,
Neural Netw.
112
,
85
97
(
2019
).
51.
J.
Marroquin
,
S.
Mitter
, and
T.
Poggio
,
J. Am. Stat. Assoc.
82
(
397
),
76
89
(
1987
).
52.
O. L.
Mangasarian
and
R.
Meyer
,
SIAM J. Control Optim.
17
(
6
),
745
752
(
1979
).
53.
T.
Evgeniou
,
M.
Pontil
, and
T.
Poggio
,
Adv. Comput. Math.
13
(
1
),
1
(
2000
).
54.
L.-F.
Chen
,
H.-Y. M.
Liao
,
M.-T.
Ko
,
J.-C.
Lin
, and
G.-J.
Yu
,
Pattern Recognit.
33
(
10
),
1713
1726
(
2000
).
55.
Y.-H.
Pao
,
G.-H.
Park
, and
D. J.
Sobajic
,
Neurocomputing
6
(
2
),
163
180
(
1994
).
56.
A.
Beck
and
M.
Teboulle
,
SIAM J. Imaging. Sci.
2
(
1
),
183
202
(
2009
).
57.
S.
Ghosh
,
L.
Schülen
,
A. D.
Kachhvah
,
A.
Zakharova
, and
S.
Jalan
,
Europhys. Lett.
127
,
30002
(
2019
).
58.
Y.
Kuramoto
, in Lecture Notes in Physics, International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer-Verlag, New York, 1975), Vol. 39, p. 420.
59.
S.
Strogatz
,
Physica D
143
(
1–4
),
1
20
(
2000
).
60.
F. A.
Rodrigues
,
T. K.
Peron
,
P.
Jie
, and
J.
Kurths
,
Phys. Rep.
610
(
1
),
1
98
(
2016
).
61.
S.
Jalan
,
S.
Ghosh
, and
B.
Patra
,
Chaos
27
,
101104
(
2017
). .
62.
D. M.
Abrams
and
S. H.
Strogatz
,
Int. J. Bifurcat. Chaos
16
(
1
),
21
37
(
2006
).
63.
M.
Masoliver
,
N.
Malik
,
E.
Schöll
, and
A.
Zakharova
,
Chaos
27
,
101102
(
2017
).
64.
N.
Semenova
,
A.
Zakharova
,
V. S.
Anishchenko
, and
E.
Schöll
,
Phys. Rev. Lett.
117
,
014102
(
2016
).
65.
L.
Schülen
,
S.
Ghosh
,
A. D.
Kachhvah
,
A.
Zakharova
, and
S.
Jalan
,
Chaos Soliton. Fract.
128
,
290
296
(
2019
).
66.
R.
May
,
Nature
261
(
5560
),
459
467
(
1976
).
67.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
1993
).
68.
S.
Jalan
et al.,
Phys. Rev. E
94
,
062202
(
2016
);
[PubMed]
F. M.
Atay
,
J.
Jost
, and
A.
Wende
,
Phys. Rev. Lett.
92
,
144101
(
2004
);
[PubMed]
S. C.
Phatak
and
S. S.
Rao
,
Phys. Rev. E
51
,
3670
(
1995
);
N.
Parekh
,
S.
Parthasarathy
, and
S.
Sinha
,
Phys. Rev. Lett.
81
,
1401
(
1998
).
69.
M.
Hénon
,
Commun. Math. Phys.
50
(
1
),
69
77
(
1976
).
70.
D. H.
Wolpert
,
Neural Comput.
9
,
1341
(
1996
).
71.
In the testing phase, the snapshot profiles are generated with a random choice of the system’s parameters. This random choice of the parameters leads to some profile outcomes, which cannot be assigned a label by visual inspection. We considered the states as disputed as they lack the labels assigned visually in the training dataset. These states primarily belong to the transition phase where the underlying system makes the transition from one type of dynamics to others. Therefore, we categorized these states as disputed and removed them from the testing sample set. A few examples of such disputed states can be found in the link .
72.
A.
Tharwat
, “
Classification assessment methods
,”
Appl. Comput. Inf.
(
published online
).
73.
N.-D.
Tsigkri-DeSmedt
,
J.
Hizanidis
,
P.
Hövel
, and
A.
Provata
,
Eur. Phys. J. ST
225
,
1149
1164
(
2016
).
74.
N.-D.
Tsigkri-DeSmedt
,
I.
Koulierakis
,
G.
Karakos
, and
A.
Provata
,
Eur. Phys. J. B
91
,
305
(
2018
).
75.
Y.
Suda
and
K.
Okuda
,
Phys. Rev. E
97
,
042212
(
2018
).
76.
A.
Palmigiano
,
J.
Pastor
,
R.
García de Sola
, and
G. J.
Ortega
,
PLoS One
7
(
7
),
e41799
(
2012
).
77.
I.
Kanter
et al.,
Europhys. Lett.
93
,
66001
(
2011
).
78.
A.
Singh
,
S.
Jalan
, and
S.
Boccaletti
,
Chaos
27
,
043103
(
2017
).
79.
B.
Blasius
,
A.
Huppert
, and
L.
Stone
,
Nature
399
(
6734
),
354
359
(
1999
).
81.
V. A.
Maksimenko
et al.,
Phys. Rev. E
96
,
012316
(
2017
).
82.
Complex Systems Lab
, “Characterization of chimera using machine learning,” GitHub Repo. https://github.com/complex-systems-lab/Project_Chimera_ML.
You do not currently have access to this content.