We report the diversity of scroll wave chimeras in the three-dimensional (3D) Kuramoto model with inertia for N3 identical phase oscillators placed in a unit 3D cube with periodic boundary conditions. In the considered model with inertia, we have found patterns that do not exist in a pure system without inertia. In particular, a scroll ring chimera is obtained from random initial conditions. In contrast to this system without inertia, where all chimera states have incoherent inner parts, these states can have partially coherent or fully coherent inner parts as exemplified by a scroll ring chimera. Solitary states exist in the considered model as separate states or can coexist with scroll wave chimeras in the oscillatory space. We also propose a method of construction of 3D images using solitary states as solutions of the 3D Kuramoto model with inertia.

1.
Y.
Kuramoto
, Nonlinear Dynamics and Chaos (CRC Press, 2002), pp. 209–227.
2.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
(
4
),
380
385
(
2002
).
3.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
4.
Y.
Kuramoto
and
S. I.
Shima
,
Prog. Theor. Phys. Supp.
150
,
115
125
(
2003
).
5.
P.-J.
Kim
,
T.-W.
Ko
,
H.
Jeong
, and
H.-T.
Moon
,
Phys. Rev. E
70
,
065201(R)
(
2004
).
6.
E.
Martens
,
C.
Laing
, and
S.
Strogatz
,
Phys. Rev. Lett.
104
,
044101
(
2010
).
7.
O.
Omel’chenko
,
M.
Wolfrum
,
S.
Yanchuk
,
Y.
Maistrenko
, and
O.
Sudakov
,
Phys. Rev. E
85
(
3
),
036210
(
2012
).
8.
M. J.
Panaggio
and
D. M.
Abrams
,
Phys. Rev. Lett.
110
,
094102
(
2013
).
9.
J.
Xie
,
E.
Knobloch
, and
H.-C.
Kao
,
Phys. Rev. E.
92
,
042921
(
2015
).
10.
C. R.
Laing
,
SIAM J. Appl. Dyn. Syst.
16
(
2
),
974
1014
(
2017
).
11.
O.
Omel’chenko
,
M.
Wolfrum
, and
E.
Knobloch
,
SIAM J. Appl. Dyn. Syst.
17
(
1
),
97
127
(
2018
).
12.
J. F.
Totz
,
J.
Rode
,
M. R.
Tinsley
et al.,
Nat. Phys.
14
,
282
285
(
2018
).
13.
O.
Omel’chenko
and
E.
Knobloch
,
New J. Phys.
21
,
093034
(
2019
).
14.
J. F.
Totz
, “Spiral wave chimera,” in Synchronization and Waves in Active Media (Springer, 2019), pp. 55–97.
15.
Y.
Maistrenko
,
O.
Sudakov
,
O.
Osiv
, and
V.
Maistrenko
,
New J. Phys.
17
,
073037
(
2015
).
16.
H. W.
Lau
and
J.
Davidsen
,
Phys. Rev. E
94
,
010204(R)
(
2016
).
17.
V.
Maistrenko
,
O.
Sudakov
,
O.
Osiv
, and
Y.
Maistrenko
,
Eur. Phys. J. Spec. Top.
226
(
9
),
1867
1881
(
2017
).
18.
T.
Kasimatis
,
J.
Hizanidis
, and
A.
Provata
,
Phys. Rev. E
97
,
052213
(
2018
).
19.
S.
Kundu
,
B. K.
Bera
,
B. D.
Ghosh
, and
M.
Lakshmanan
,
Phys. Rev. E
99
(
2
),
022204
(
2019
).
20.
O.
Omel’chenko
and
E.
Knobloch
,
New J. Phys.
21
,
093034
(
2019
).
21.
Y.
Maistrenko
,
A.
Vasylenko
,
O.
Sudakov
,
R.
Levchenko
, and
V.
Maistrenko
,
Int. J. Bifurcat. Chaos
24
,
1440014
(
2014
).
23.
V.
Biktashev
and
I.
Biktasheva
, Engineering of Chemical Complexity II (World Scientific, 2014), pp. 221–238.
24.
J.
Totz
,
H.
Engel
, and
O.
Steinbock
,
New J. Phys.
17
,
093043
(
2015
).
25.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
91
,
022907
(
2015
).
26.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
,
Chaos
28
,
011103
(
2018
).
27.
V.
Maistrenko
,
O.
Sudakov
, and
Y.
Maistrenko
, arXiv:2001.02167v2 [nlin.AO] (2020).
28.
A.
Salnikov
,
R.
Levchenko
, and
O.
Sudakov
, in Proceedings of the 6th IEEE International Conference on IDAACS (IEEE, 2011), pp. 198–202.
29.
O.
Sudakov
,
A.
Cherederchuk
, and
V.
Maistrenko
, in Proceedings of the 6th IEEE International Conference on IDAACS (IEEE, 2017), pp. 311–316.
30.
R.
Troncoso
and
Á.
Núñez
,
Ann. Phys.
346
,
182
194
(
2014
).
31.
R.
Khymyn
,
I.
Lisenkov
,
V.
Tiberkevich
,
B.
Ivanov
, and
A.
Slavin
,
Sci. Rep.
7
,
43705
(
2017
).
32.
A.
Fratalocchi
,
C.
Conti
, and
G.
Ruocco
,
Opt. Express
16
,
8342
8349
(
2008
).
You do not currently have access to this content.