Vulnerability of networks has so far been quantified mainly for structural properties. In driven systems, however, vulnerability intrinsically relies on the collective response dynamics. As shown recently, dynamic response patterns emerging in driven oscillator networks and AC power grid models are highly heterogeneous and nontrivial, depending jointly on the driving frequency, the interaction topology of the network, and the node or nodes driven. Identifying which nodes are most susceptible to dynamic driving and may thus make the system as a whole vulnerable to external input signals, however, remains a challenge. Here, we propose an easy-to-compute Dynamic Vulnerability Index (DVI) for identifying those nodes that exhibit largest amplitude responses to dynamic driving signals with given power spectra and thus are most vulnerable. The DVI is based on linear response theory, as such generic, and enables robust predictions. It thus shows potential for a wide range of applications across dynamically driven networks, for instance, for identifying the vulnerable nodes in power grids driven by fluctuating inputs from renewable energy sources and fluctuating power output to consumers.

1.
F.
Hussain
,
C.
Gupta
,
A. J.
Hirning
,
W.
Ott
,
K. S.
Matthews
,
K.
Josic
, and
M. R.
Bennett
, “
Engineered temperature compensation in a synthetic genetic clock
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
972
977
(
2014
).
2.
S.
Jahnke
,
R.-M.
Memmesheimer
, and
M.
Timme
, “
Oscillation-induced signal transmission and gating in neural circuits
,”
PLoS Comput. Biol.
10
,
e1003940
(
2014
).
3.
P.
Kundur
,
N. J.
Balu
, and
M. G.
Lauby
, Power System Stability and Control, The EPRI Power System Engineering Series Vol. 7 (McGraw-Hill, New York, 1994).
4.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
5.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
, “
Self-organized synchronization in decentralized power grids
,”
Phys. Rev. Lett.
109
,
064101
(
2012
).
6.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
,
191
(
2013
).
7.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2005
2010
(
2013
).
8.
T.
Coletta
and
P.
Jacquod
, “
Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids
,”
Phys. Rev. E
93
,
032222
(
2016
).
9.
D. H.
Zanette
, “
Propagation of small perturbations in synchronized oscillator networks
,”
Europhys. Lett.
68
,
356
362
(
2004
).
10.
D. H.
Zanette
, “
Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators
,”
Eur. Phys. J. B
43
,
97
108
(
2005
).
11.
M.
Tyloo
,
T.
Coletta
, and
P.
Jacquod
, “
Robustness of synchrony in complex networks and generalized Kirchhoff indices
,”
Phys. Rev. Lett.
120
,
084101
(
2018
).
12.
X.
Zhang
,
S.
Hallerberg
,
M.
Matthiae
,
D.
Witthaut
, and
M.
Timme
, “
Fluctuation-induced distributed resonances in oscillatory networks
,”
Sci. Adv.
5
,
eaav1027
(
2019
).
13.
H.
Haehne
,
K.
Schmietendorf
,
S.
Tamrakar
,
J.
Peinke
, and
S.
Kettemann
, “
Propagation of wind-power-induced fluctuations in power grids
,”
Phys. Rev. E
99
,
050301
(
2019
).
14.
B.
Schäfer
,
M.
Matthiae
,
X.
Zhang
,
M.
Rohden
,
M.
Timme
, and
D.
Witthaut
, “
Escape routes, weak links, and desynchronization in fluctuation-driven networks
,”
Phys. Rev. E
95
,
060203
(
2017
).
15.
S.
Kettemann
, “
Delocalization of disturbances and the stability of ac electricity grids
,”
Phys. Rev. E
94
,
062311
(
2016
).
16.
S.
Tamrakar
,
M.
Conrath
, and
S.
Kettemann
, “
Propagation of disturbances in ac electricity grids
,”
Sci. Rep.
8
,
6459
(
2018
).
17.
D.
Manik
,
M.
Rohden
,
H.
Ronellenfitsch
,
X.
Zhang
,
S.
Hallerberg
,
D.
Witthaut
, and
M.
Timme
, “
Network susceptibilities: Theory and applications
,”
Phys. Rev. E
95
,
012319
(
2017
).
18.
B.
Schäfer
,
C.
Beck
,
K.
Aihara
,
D.
Witthaut
, and
M.
Timme
, “
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
,”
Nat. Energy
3
,
119
(
2018
).
19.
M.
Tyloo
,
R.
Delabays
, and
P.
Jacquod
, “
Noise-induced desynchronization and stochastic escape from equilibrium in complex networks
,”
Phys. Rev. E
99
,
062213
(
2019
).
20.
J.
Hindes
,
P.
Jacquod
, and
I. B.
Schwartz
, “Network desynchronization by non-Gaussian fluctuations,” arXiv:1904.12174 (2019).
21.
M.
Tyloo
,
L.
Pagnier
, and
P.
Jacquod
, “The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities,” arXiv:1810.09694 (2018).
22.
S.
Auer
,
F.
Hellmann
,
M.
Krause
, and
J.
Kurths
, “
Stability of synchrony against local intermittent fluctuations in tree-like power grids
,”
Chaos
27
,
127003
(
2017
).
23.
A.
Plietzsch
,
S.
Auer
,
J.
Kurths
, and
F.
Hellmann
, “A generalized linear response theory of complex networks with an application to renewable fluctuations in microgrids,” arXiv:1903.09585 (2019).
24.
S.
Arianos
,
E.
Bompard
,
A.
Carbone
, and
F.
Xue
, “
Power grid vulnerability: A complex network approach
,”
Chaos
19
,
013119
(
2009
).
25.
I.
Simonsen
,
L.
Buzna
,
K.
Peters
,
S.
Bornholdt
, and
D.
Helbing
, “
Transient dynamics increasing network vulnerability to cascading failures
,”
Phys. Rev. Lett.
100
,
218701
(
2008
).
26.
R.
Albert
,
I.
Albert
, and
G. L.
Nakarado
, “
Structural vulnerability of the North American power grid
,”
Phys. Rev. E
69
,
025103
(
2004
).
27.
H.
Song
and
M.
Kezunovic
, “Static security analysis based on vulnerability index (VI) and network contribution factor (NCF) method,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific (IEEE, 2005), pp. 1–7.
28.
G.
Qu
,
J.
Rudraraju
,
R.
Modukuri
,
S.
Hariri
, and
C. S.
Raghavendra
, “A framework for network vulnerability analysis,” in IASTED International Conference on Communications, Internet, and Information Technology, St. Thomas, US Virgin Islands, 18–20 November 2002 (ACTA Press, 2002), pp. 289–294.
29.
R.
Gutiérrez
,
F.
Del-Pozo
, and
S.
Boccaletti
, “
Node vulnerability under finite perturbations in complex networks
,”
PLoS One
6
,
e20236
(
2011
).
30.
M.
Tyloo
and
P.
Jacquod
, “Global robustness vs. local vulnerabilities in complex synchronous networks,” arXiv:1905.03582 (2019).
31.
P.
Schultz
,
J.
Heitzig
, and
J.
Kurths
, “
A random growth model for power grids and other spatially embedded infrastructure networks
,”
Eur. Phys. J. Spec. Top.
223
,
2593
2610
(
2014
).
32.
M.
Anvari
,
G.
Lohmann
,
M.
Wächter
,
P.
Milan
,
E.
Lorenz
,
D.
Heinemann
,
M. R. R.
Tabar
, and
J.
Peinke
, “
Short term fluctuations of wind and solar power systems
,”
New J. Phys.
18
,
063027
(
2016
).
33.
Here, the response, as a physical quantity, refers to the real part of the complex extension of Θ˙i(k)(t).
34.
R.
Fagin
,
R.
Kumar
,
M.
Mahdian
,
D.
Sivakumar
, and
E.
Vee
, “Comparing and aggregating rankings with ties,” in Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (ACM, 2004), pp. 47–58.
35.
P.
Diaconis
and
R. L.
Graham
, “
Spearman’s footrule as a measure of disarray
,”
J. R. Stat. Soc. Ser. B
39
,
262
268
(
1977
).
You do not currently have access to this content.