In this paper, we analyze the formation and dynamical properties of discrete light bullets in an array of passively mode-locked lasers coupled via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neighbor coupled Haus master equations, we show numerically the existence of discrete light bullets for different coupling strengths. In order to reduce the complexity of the analysis, we approximate the full problem by a reduced set of discrete equations governing the dynamics of the transverse profile of the discrete light bullets. This effective theory allows us to perform a detailed bifurcation analysis via path-continuation methods. In particular, we show the existence of multistable branches of discrete localized states, corresponding to different number of active elements in the array. These branches are either independent of each other or are organized into a snaking bifurcation diagram where the width of the discrete localized states grows via a process of successive increase and decrease of the gain. Mechanisms are revealed by which the snaking branches can be created and destroyed as a second parameter, e.g., the linewidth enhancement factor or the coupling strength is varied. For increasing couplings, the existence of moving bright and dark discrete localized states is also demonstrated.

1.
A.
Davydov
,
J. Theor. Biol.
38
,
559
(
1973
).
2.
A. S.
Davydov
and
N. I.
Kislukha
,
Phys. Status Solidi B
59
,
465
(
1973
).
3.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
,
Phys. Rev. Lett.
42
,
1698
(
1979
).
4.
A. J.
Heeger
,
S.
Kivelson
,
J. R.
Schrieffer
, and
W. P.
Su
,
Rev. Mod. Phys.
60
,
781
(
1988
).
5.
S.
Flach
and
A. V.
Gorbach
,
Phys. Rep.
467
,
1
(
2008
).
6.
A.
Trombettoni
and
A.
Smerzi
,
Phys. Rev. Lett.
86
,
2353
(
2001
).
7.
D. N.
Christodoulides
and
R. I.
Joseph
,
Opt. Lett.
13
,
794
(
1988
).
8.
D. N.
Christodoulides
,
F.
Lederer
, and
Y.
Silberberg
,
Nature
424
,
817
(
2003
).
9.
F.
Lederer
,
G. I.
Stegeman
,
D. N.
Christodoulides
,
G.
Assanto
,
M.
Segev
, and
Y.
Silberberg
,
Phys. Rep.
463
,
1
(
2008
).
10.
H. S.
Eisenberg
,
Y.
Silberberg
,
R.
Morandotti
,
A. R.
Boyd
, and
J. S.
Aitchison
,
Phys. Rev. Lett.
81
,
3383
(
1998
).
11.
J. W.
Fleischer
,
T.
Carmon
,
M.
Segev
,
N. K.
Efremidis
, and
D. N.
Christodoulides
,
Phys. Rev. Lett.
90
,
023902
(
2003
).
12.
J. W.
Fleischer
,
M.
Segev
,
N. K.
Efremidis
, and
D. N.
Christodoulides
,
Nature
422
,
147
(
2003
).
13.
R.
Iwanow
,
R.
Schiek
,
G. I.
Stegeman
,
T.
Pertsch
,
F.
Lederer
,
Y.
Min
, and
W.
Sohler
,
Phys. Rev. Lett.
93
,
113902
(
2004
).
14.
O.
Egorov
,
U.
Peschel
, and
F.
Lederer
,
Phys. Rev. E
72
,
066603
(
2005
).
15.
A. V.
Yulin
,
A. R.
Champneys
, and
D. V.
Skryabin
,
Phys. Rev. A
78
,
011804
(
2008
).
16.
A. V.
Yulin
and
A. R.
Champneys
,
SIAM J. Appl. Dyn. Syst.
9
,
391
(
2010
).
17.
J. E.
Prilepsky
,
A. V.
Yulin
,
M.
Johansson
, and
S. A.
Derevyanko
,
Opt. Lett.
37
,
4600
(
2012
).
18.
Y. S.
Kivshar
and
D. K.
Campbell
,
Phys. Rev. E
48
,
3077
(
1993
).
19.
O. A.
Egorov
and
F.
Lederer
,
Opt. Lett.
38
,
1010
(
2013
).
20.
M. G.
Clerc
,
M. A.
Ferré
,
S.
Coulibaly
,
R. G.
Rojas
, and
M.
Tlidi
,
Opt. Lett.
42
,
2906
(
2017
).
21.
M. G.
Clerc
,
R. G.
Elías
, and
R. G.
Rojas
,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
369
,
412
(
2011
).
22.
D.
Puzyrev
,
A. G.
Vladimirov
,
A.
Pimenov
,
S. V.
Gurevich
, and
S.
Yanchuk
,
Phys. Rev. Lett.
119
,
163901
(
2017
).
23.
H. A.
Haus
,
IEEE J. Sel. Top. Quant. Electron.
6
,
1173
(
2000
).
24.
M.
Marconi
,
J.
Javaloyes
,
S.
Balle
, and
M.
Giudici
,
Phys. Rev. Lett.
112
,
223901
(
2014
).
25.
P.
Camelin
,
J.
Javaloyes
,
M.
Marconi
, and
M.
Giudici
,
Phys. Rev. A
94
,
063854
(
2016
).
26.
C.
Schelte
,
J.
Javaloyes
, and
S. V.
Gurevich
,
Phys. Rev. A
97
,
053820
(
2018
).
27.
J.
Javaloyes
,
Phys. Rev. Lett.
116
,
043901
(
2016
).
28.
S. V.
Gurevich
and
J.
Javaloyes
,
Phys. Rev. A
96
,
023821
(
2017
).
29.
A.
Pimenov
,
J.
Javaloyes
,
S. V.
Gurevich
, and
A. G.
Vladimirov
,
Philos. Trans. R. Soc. London A
376
,
20170372
(
2018
).
30.
G.
New
,
Quant. Electron. IEEE J.
10
,
115
(
1974
).
31.
N. N.
Rozanov
and
G. V.
Khodova
,
Opt. Spectrosc.
65
,
449
(
1988
).
32.
A. G.
Vladimirov
,
S. V.
Fedorov
,
N. A.
Kaliteevskii
,
G. V.
Khodova
, and
N. N.
Rosanov
,
J. Opt. B Quant. Semiclass. Opt.
1
,
101
(
1999
).
33.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
,
Int. J. Bifurcat. Chaos
01
,
493
(
1991
).
34.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
,
Int. J. Bifurcat. Chaos
01
,
745
(
1991
).
35.
E. J.
Doedel
,
T. F.
Fairgrieve
,
B.
Sandstede
,
A. R.
Champneys
,
Y. A.
Kuznetsov
, and
X.
Wang
, “AUTO-07P: Continuation and bifurcation software for ordinary differential equations,” Technical Report, 2007.
36.
S. T.
Cundiff
,
J. M.
Soto-Crespo
, and
N.
Akhmediev
,
Phys. Rev. Lett.
88
,
073903
(
2002
).
37.
N.
Akhmediev
and
J.
Soto-Crespo
,
Phys. Lett. A
317
,
287
(
2003
).
38.
S. V.
Gurevich
,
C.
Schelte
, and
J.
Javaloyes
,
Phys. Rev. A
99
,
061803
(
2019
).
39.
J.
Kutz
,
B.
Collings
,
K.
Bergman
, and
W.
Knox
,
Quant. Electron. IEEE J.
34
,
1749
(
1998
).
40.
M.
Nizette
,
D.
Rachinskii
,
A.
Vladimirov
, and
M.
Wolfrum
,
Physica D
218
,
95
(
2006
).
You do not currently have access to this content.