Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.

1.
A. M.
Zhabotinsky
and
A. N.
Zaikin
, “
Autowave processes in a distributed chemical system
,”
J. Theor. Biol.
40
,
45
61
(
1973
).
2.
S.
Jakubith
,
H. H.
Rotermund
,
W.
Engel
,
A.
von Oertzen
, and
G.
Ertl
, “
Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence
,”
Phys. Rev. Lett.
65
,
3013
3016
(
1990
).
3.
C.
Punckt
,
M.
Stich
,
C.
Beta
, and
H. H.
Rotermund
, “
Suppression of spatiotemporal chaos in the oscillatory CO oxidation on Pt(110) by focused laser light
,”
Phys. Rev. E
77
,
046222
(
2008
).
4.
K. J.
Lee
,
E. C.
Cox
, and
R. E.
Goldstein
, “
Competing patterns of signaling activity in Dictyostelium discoideum
,”
Phys. Rev. Lett.
76
,
1174
1177
(
1996
).
5.
J. B.
Chang
and
J. E.
Ferrell
, “
Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle
,”
Nature
500
,
603
607
(
2013
).
6.
G.
Bub
,
A.
Shrier
, and
L.
Glass
, “
Global organization of dynamics in oscillatory heterogeneous excitable media
,”
Phys. Rev. Lett.
94
,
028105
(
2005
).
7.
A.
Pikovsky
,
J.
Kurths
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
8.
P. S.
Hagan
, “
Target patterns in reaction-diffusion systems
,”
Adv. Appl. Math.
2
,
400
416
(
1981
).
9.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
10.
A. S.
Mikhailov
and
A.
Engel
, “
Multiple target pattern creation and synchronization phenomena
,”
Phys. Lett. A
117
,
257
260
(
1986
).
11.
R.
Tönjes
and
B.
Blasius
, “
Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder
,”
Phys. Rev. E
79
,
1
9
(
2009
).
12.
B.
Novák
and
J. J.
Tyson
, “
Design principles of biochemical oscillators
,”
Nat. Rev. Mol. Cell Biol.
9
,
981
991
(
2008
).
13.
A. E.
Bugrim
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
, “
Heterogeneous sources of target patterns in reaction-diffusion systems
,”
J. Phys. Chem.
100
,
19017
19022
(
1996
).
14.
V. E.
Deneke
,
A.
Puliafito
,
D.
Krueger
,
A. V.
Narla
,
A.
De Simone
,
L.
Primo
,
M.
Vergassola
,
S.
De Renzis
, and
S.
Di Talia
, “
Self-organized nuclear positioning synchronizes the cell cycle in Drosophila embryos
,”
Cell
177
,
925
941
(
2019
).
15.
O. U.
Kheowan
,
E.
Mihaliuk
,
B.
Blasius
,
I.
Sendiña-Nadal
, and
K.
Showalter
, “
Wave mediated synchronization of nonuniform oscillatory media
,”
Phys. Rev. Lett.
98
,
2
5
(
2007
).
16.
A. F.
Taylor
,
M. R.
Tinsley
,
F.
Wang
,
Z.
Huang
, and
K.
Showalter
, “
Dynamical quorum sensing and synchronization in large populations of chemical oscillators
,”
Science
323
,
614
617
(
2009
).
17.
R.
Toth
and
A. F.
Taylor
, “
Loss of coherence in a population of diffusively coupled oscillators
,”
J. Chem. Phys.
125
,
224708
(
2006
).
18.
H.
Fukuda
,
N.
Tamari
,
H.
Morimura
, and
S.
Kai
, “
Entrainment in a chemical oscillator chain with a pacemaker
,”
J. Phys. Chem. A
109
,
11250
11254
(
2005
).
19.
N.
Li
,
J.
Delgado
,
H. O.
González-Ochoa
,
I. R.
Epstein
, and
S.
Fraden
, “
Combined excitatory and inhibitory coupling in a 1-D array of Belousov-Zhabotinsky droplets
,”
Phys. Chem. Chem. Phys.
16
,
10965
10978
(
2014
).
20.
A. M.
Tayar
,
E.
Karzbrun
,
V.
Noireaux
, and
R. H.
Bar-Ziv
, “
Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
11609
11614
(
2017
).
21.
H.
Kitahata
,
J.
Taguchi
,
M.
Nagayama
,
T.
Sakurai
,
Y.
Ikura
,
A.
Osa
,
Y.
Sumino
,
M.
Tanaka
,
E.
Yokoyama
, and
H.
Miike
, “
Oscillation and synchronization in the combustion of candles
,”
J. Phys. Chem. A
113
,
8164
8168
(
2009
).
22.
M.
Stich
and
A. S.
Mikhailov
, “
Complex pacemakers and wave sinks in heterogeneous oscillatory chemical systems
,”
Z. Phys. Chem.
216
,
521
(
2002
).
23.
X.
Shao
,
Y.
Wu
,
J.
Zhang
,
H.
Wang
, and
Q.
Ouyang
, “
Inward propagating chemical waves in a single-phase reaction-diffusion system
,”
Phys. Rev. Lett.
100
,
198304
(
2008
).
24.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
25.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
26.
M.
Stich
and
A. S.
Mikhailov
, “
Target patterns in two-dimensional heterogeneous oscillatory reaction–diffusion systems
,”
Physica D
215
,
38
45
(
2006
).
27.
Z.
Zheng
,
G.
Hu
, and
B.
Hu
, “
Phase slips and phase synchronization of coupled oscillators
,”
Phys. Rev. Lett.
81
,
5318
5321
(
1998
).
28.
F.
Radicchi
and
H.
Meyer-Ortmanns
, “
Entrainment of coupled oscillators on regular networks by pacemakers
,”
Phys. Rev. E
73
,
036218
(
2006
).
29.
S. A.
Campbell
and
Z.
Wang
, “
Phase models and clustering in networks of oscillators with delayed coupling
,”
Physica D
363
,
44
55
(
2018
).
30.
R.
Dodla
,
A.
Sen
, and
G. L.
Johnston
, “
Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators
,”
Phys. Rev. E
69
,
056217
(
2004
).
31.
E.
Camacho
,
R.
Rand
, and
H.
Howland
, “
Dynamics of two van der Pol oscillators coupled via a bath
,”
Int. J. Solids Struct.
41
,
2133
2143
(
2004
).
32.
J. J.
Tyson
and
J. P.
Keener
, “
Singular perturbation theory of traveling waves in excitable media (a review)
,”
Physica D
32
,
327
361
(
1988
).
33.
L.
Gelens
,
G. A.
Anderson
, and
J. E.
Ferrell
, “
Spatial trigger waves: Positive feedback gets you a long way
,”
Mol. Biol. Cell
25
,
3486
3493
(
2014
).
34.
K.
Torbensen
,
F.
Rossi
,
S.
Ristori
, and
A.
Abou-Hassan
, “
Chemical communication and dynamics of droplet emulsions in networks of Belousov–Zhabotinsky micro-oscillators produced by microfluidics
,”
Lab Chip
17
,
1179
1189
(
2017
).
35.
A.
Gomez-Marin
,
J.
Garcia-Ojalvo
, and
J. M.
Sancho
, “
Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling
,”
Phys. Rev. Lett.
98
,
168303
(
2007
).
36.
J.
Gou
,
W.-Y.
Chiang
,
P.-Y.
Lai
,
M. J.
Ward
, and
Y.-X.
Li
, “
A theory of synchrony by coupling through a diffusive chemical signal
,”
Physica D
339
,
1
17
(
2017
).
37.
F.
Naqib
,
T.
Quail
,
L.
Musa
,
H.
Vulpe
,
J.
Nadeau
,
J.
Lei
, and
L.
Glass
, “
Tunable oscillations and chaotic dynamics in systems with localized synthesis
,”
Phys. Rev. E
85
,
046210
(
2012
).
38.
A. S.
Mikhailov
, “
Stable autonomous pacemakers in the enlarged Ginzburg-Landau model
,”
Physica D
5
,
99
112
(
1992
).
39.
H.
Sakaguchi
and
S.
Maeyama
, “
Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators
,”
Phys. Rev. E
87
,
024901
(
2013
).
You do not currently have access to this content.