Homogeneously driven dynamical systems exhibit multistability. Depending on the initial conditions, fronts present a rich dynamical behavior between equilibria. Qualitatively, this phenomenology is persistent under spatially modulated forcing. However, the understanding of equilibria and front dynamics organization is not fully established. Here, we investigate these phenomena in the high-wavenumber limit. Based on a model that describes the reorientation transition of a liquid crystal light valve with spatially modulated optical forcing and the homogenization method, equilibria and fronts as a function of forcing parameters are studied. The forcing induces patterns coexisting with the uniform state in regions where the system without forcing is monostable. The front dynamics is characterized theoretically and numerically. Experimental results verify these phenomena and the law describing bistability, showing quite good agreement.

1
P.
Glansdorff
and
I.
Prigogine
,
Thermodynamic Theory of Structures, Stability and Fluctuations
(
Wiley
,
New York
,
1971
).
2
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley & Sons
,
New York
,
1977
).
3
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
4
L. M.
Pismen
,
Patterns and Interfaces in Dissipative Dynamics
(
Springer
,
Berlin
,
2006
).
5
J. S.
Langer
,
Rev. Mod. Phys.
52
,
1
(
1980
).
7
P.
Collet
and
J. P.
Eckmann
,
Instabilities and Fronts in Extended Systems
(
Princeton University Press
,
Princeton
,
1990
).
8
J. D.
Murray
,
Mathematical Biology
(
Springer-Verlag
,
Berlin
,
1993
).
9
C.
Chevallard
,
M. G.
Clerc
,
P.
Coullet
, and
J. M.
Gilli
,
Eur. Phys. J. E
1
,
179
(
2000
).
10
M. G.
Clerc
,
S.
Residori
, and
C.
Riera
,
Phys. Rev. E
63
,
060701
(
2001
).
11
12
S.
Residori
,
A.
Petrossian
,
T.
Nagaya
,
C.
Riera
, and
M. G.
Clerc
,
Physica D
199
,
149
(
2004
).
13
A.
Hubert
and
R.
Schafer
,
Magnetic Domains: The Analysis of Magnetic Microstructures
(
Springer Science & Business Media
,
Berlin
,
2008
).
14
F.
Haudin
,
R. G.
Elías
,
R. G.
Rojas
,
U.
Bortolozzo
,
M. G.
Clerc
, and
S.
Residori
,
Phys. Rev. Lett.
103
,
128003
(
2009
);
[PubMed]
F.
Haudin
,
R. G.
Elías
,
R. G.
Rojas
,
U.
Bortolozzo
,
M. G.
Clerc
, and
S.
Residori
Phys. Rev. E.
81, 056203 (2010).
15
V.
Mendez
,
S.
Fedotov
, and
W.
Horsthemke
,
Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(
Springer Science & Business Media
,
Berlin
,
2010
).
16
E.
Macias
,
M. G.
Clerc
,
C.
Falcon
, and
M. A.
Garcia-Nustes
,
Phys. Rev. E
88
,
020201(R)
(
2013
).
17
W.
van Saarloos
and
P. C.
Hohenberg
,
Physica D
56
,
303
(
1992
).
18
C.
Castillo-Pinto
,
M. G.
Clerc
, and
G.
González-Cortés
,
Sci. Rep.
9
,
15096
(
2019
).
19
A. J.
Alvarez-Socorro
,
M. G.
Clerc
,
G.
González-Cortés
, and
M.
Wilson
,
Phys. Rev. E
95
,
010202(R)
(
2017
).
20
P.
Coullet
,
J.
Lega
,
B.
Houchmanzadeh
, and
J.
Lajzerowicz
,
Phys. Rev. Lett.
65
,
1352
(
1990
).
21
D.
Michaelis
,
U.
Peschel
,
F.
Lederer
,
D. V.
Skryabin
, and
W. J.
Firth
,
Phys. Rev. E
63
,
066602
(
2001
).
22
M. G.
Clerc
,
S.
Coulibaly
, and
D.
Laroze
,
Int. J. Bifurcat. Chaos
19
,
2717
(
2009
).
24
A.
Kolmogorov
,
I.
Petrovsky
, and
N.
Piscounov
,
Bull. Univ. Moscow Ser. Int. A
1
,
1
(
1937
).
25
G.
Ahlers
and
D. S.
Cannell
,
Phys. Rev. Lett.
50
,
1583
(
1983
).
26
J.
Fineberg
and
V.
Steinberg
,
Phys. Rev. Lett.
58
,
1332
(
1987
).
27
J.
Langer
,
An Introduction to the Kinetics of First-Order Phase Transition, Solids Far from Equilibrium
(
Cambridge University Press
,
Cambridge
,
1992
).
28
M. G.
Clerc
,
T.
Nagaya
,
A.
Petrossian
,
S.
Residori
, and
C. S.
Riera
,
Eur. Phys. J. D
28
,
435
(
2004
).
29
K.
Alfaro-Bittner
,
C.
Castillo-Pinto
,
M. G.
Clerc
,
G.
González-Cortés
,
R. G.
Rojas
, and
M.
Wilson
,
Phys. Rev. E
98
,
050201(R)
(
2018
).
30
A. J.
Alvarez-Socorro
,
C.
Castillo-Pinto
,
M. G.
Clerc
,
G.
González-Cortés
, and
M.
Wilson
,
Opt. Express
27
,
12391
(
2019
).
31
S.
Coen
,
M.
Tlidi
,
Ph.
Emplit
, and
M.
Haelterman
,
Phys. Rev. Lett.
83
,
2328
(
1999
).
32
V.
Odent
,
M.
Tlidi
,
M. G.
Clerc
,
P.
Glorieux
, and
E.
Louvergneaux
,
Phys. Rev. A
90
,
011806(R)
(
2014
).
33
M. G.
Clerc
,
S.
Coulibaly
, and
M.
Tlidi
,
Phys. Rev. Res.
2
,
013024
(
2020
).
34
M. G.
Clerc
,
C.
Falcon
, and
E.
Tirapegui
,
Phys. Rev. Lett.
94
,
148302
(
2005
);
[PubMed]
M. G.
Clerc
,
C.
Falcon
, and
E.
Tirapegui
Phys. Rev. E
74, 011303 (2006).
35
F.
Marino
,
G.
Giacomelli
, and
S.
Barland
,
Phys. Rev. Lett.
112
,
103901
(
2014
).
36
E.
Sánchez-Palencia
, Nonhomogeneous Media and Vibration Theory, Notes in Physics (Springer-Verlag, Berlin, 1980).
37
N.
Bakhvalov
and
G.
Panasenko
,
Homogenisation: Averaging Processes in Periodic Media
(
Kluwer Academic Publishers Group
,
Dordrecht
,
1989
).
38
C. C.
Mei
and
B.
Vernescu
,
Homogenization Methods for Multiscale Mechanics
(
World Scientific
,
2010
).
39
G.
Pavliotis
and
A.
Stuart
,
Multiscale Methods: Averaging and Homogenization
(
Springer Science & Business Media
,
New York
,
2008
).
40
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer Science & Business Media
,
New York
,
1999
).
41
R. G.
Rojas
, “Sur de gouttes, cristaux liquides et fronts,” dissertation (University of Nice Sophia Antipolis, 2005), see http://tel.archives- ouvertes.fr.
You do not currently have access to this content.