The well-known cubic Allen–Cahn (AC) equation is a simple gradient dynamics (or variational) model for a nonconserved order parameter field. After revising main literature results for the occurrence of different types of moving fronts, we employ path continuation to determine their bifurcation diagram in dependence of the external field strength or chemical potential. We then employ the same methodology to systematically analyze fronts for more involved AC-type models. In particular, we consider a cubic–quintic variational AC model and two different nonvariational generalizations. We determine and compare the bifurcation diagrams of front solutions in the four considered models.

1.
S. M.
Allen
and
J. W.
Cahn
, “
Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
,”
Acta Metall. Mater.
27
,
1085
1095
(
1979
).
2.
A.
Kolmogorov
,
I.
Petrovsky
, and
N.
Piskunov
, “
Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem
,”
Bull. Moscow State Univ. Ser. A: Math. Mech
1
,
1
25
(
1937
).
3.
P. C.
Fife
and
W. M.
Greenlee
, “
Interior transition layers for elliptic boundary value problems with a small parameter
,”
Russ. Math. Surv.
29
,
103
131
(
1974
).
4.
F.
Schlögl
, “
Chemical reaction models for non-equilibrium phase transitions
,”
Z. Phys.
253
,
147
161
(
1972
).
5.
Y. B.
Zeldovich
and
D.
Frank-Kamenetsky
, “
K teorii ravnomernogo rasprostranenia plameni (toward a theory of uniformly propagating flames)
,”
Dokl. Akad. Nauk SSSR
19
,
693
697
(
1938
).
6.
R.
Monteiro
and
A.
Scheel
, “
Phase separation patterns from directional quenching
,”
J. Nonlinear Sci.
27
,
1339
1378
(
2017
).
7.
J. S.
Langer
, “An introduction to the kinetics of first-order phase transitions,” in Solids far from Equilibrium, edited by C. Godrèche (Cambridge University Press, 1992), Chap. 3, pp. 297–363.
8.
L.
Pismen
,
Patterns and Interfaces in Dissipative Dynamics
(
Springer Verlag
,
Berlin
,
2006
), pp.
83
139
.
9.
C.
Misbah
,
Complex Dynamics and Morphogenesis: An Introduction to Nonlinear Science
(
Springer
,
2017
).
10.
W.
van Saarloos
, “
Front propagation into unstable states
,”
Phys. Rep.
386
,
29
222
(
2003
).
11.
G.
Ahlers
and
D. S.
Cannell
, “
Vortex-front propagation in rotating Couette-Taylor flow
,”
Phys. Rev. Lett.
50
,
1583
1586
(
1983
).
12.
J.
Fineberg
and
V.
Steinberg
, “
Vortex-front propagation in Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
58
,
1332
1335
(
1987
).
13.
J. S.
Langer
, “
Instabilities and pattern formation in crystal growth
,”
Rev. Mod. Phys.
52
,
1
28
(
1980
).
14.
M.
Burger
,
Oscillations and Traveling Waves in Chemical Systems
(
Wiley
,
New York
,
1985
).
15.
M.
Clerc
,
C.
Falcón
, and
E.
Tirapegui
, “
Front propagation sustained by additive noise
,”
Phys. Rev. E
74
,
011303
(
2006
).
16.
S.
Engelnkemper
,
S. V.
Gurevich
,
H.
Uecker
,
D.
Wetzel
, and
U.
Thiele
, “Continuation for thin film hydrodynamics and related scalar problems,” in Computational Modeling of Bifurcations and Instabilities in Fluid Mechanics, Computational Methods in Applied Sciences Vol 50, edited by A. Gelfgat (Springer, 2019), pp. 459–501.
17.
J.
Lajzerowicz
, “
Domain wall near a first order phase transition: Role of elastic forces
,”
Ferroelectrics
35
,
219
222
(
1981
).
18.
J.
Bechhoefer
,
H.
Löwen
, and
L. S.
Tuckerman
, “
Dynamical mechanism for the formation of metastable phases
,”
Phys. Rev. Lett.
67
,
1266
1269
(
1991
).
19.
A. J.
Alvarez-Socorro
,
M. G.
Clerc
,
G.
González-Cortés
, and
M.
Wilson
, “
Nonvariational mechanism of front propagation: Theory and experiments
,”
Phys. Rev. E
95
,
010202
(
2017
).
20.
R.
Wittkowski
,
A.
Tiribocchi
,
J.
Stenhammar
,
R. J.
Allen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Scalar phi(4) field theory for active-particle phase separation
,”
Nat. Commun.
5
,
4351
(
2014
).
21.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu. Rev. Condens. Matter Phys.
6
,
219
244
(
2015
).
22.
J.
Stenhammar
,
A.
Tiribocchi
,
R. J.
Allen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Continuum theory of phase separation kinetics for active brownian particles
,”
Phys. Rev. Lett.
111
,
145702
(
2013
).
23.
L.
Rapp
,
F.
Bergmann
, and
W.
Zimmermann
, “
Systematic extension of the Cahn-Hilliard model for motility-induced phase separation
,”
Eur. Phys. J. E
42
,
57
(
2019
).
24.
A. M.
Menzel
and
H.
Löwen
, “
Traveling and resting crystals in active systems
,”
Phys. Rev. Lett.
110
,
055702
(
2013
).
25.
L.
Ophaus
,
S. V.
Gurevich
, and
U.
Thiele
, “
Resting and traveling localized states in an active phase-field-crystal model
,”
Phys. Rev. E
98
,
022608
(
2018
).
26.
H.
Emmerich
,
H.
Löwen
,
R.
Wittkowski
,
T.
Gruhn
,
G. I.
Tóth
,
G.
Tegze
, and
L.
Gránásy
, “
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview
,”
Adv. Phys.
61
,
665
743
(
2012
).
27.
G.
Kozyreff
and
M.
Tlidi
, “
Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems
,”
Chaos
17
,
037103
(
2007
).
28.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
29.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
30.
P.
Zhang
,
A.
Be’er
,
E.-L.
Florin
, and
H.
Swinney
, “
Collective motion and density fluctuations in bacterial colonies
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
13626
30
(
2010
).
31.
D. J. T.
Sumpter
,
Collective Animal Behavior
(
Princeton University Press
,
Kassel
,
2010
).
32.
F.
Peruani
,
J.
Starruß
,
V.
Jakovljevic
,
L.
Søgaard-Andersen
,
A.
Deutsch
, and
M.
Bär
, “
Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria
,”
Phys. Rev. Lett.
108
,
098102
(
2012
).
33.
B.
Szabó
,
G. J.
Szöllösi
,
B.
Gönci
,
Z.
Jurányi
,
D.
Selmeczi
, and
T.
Vicsek
, “
Phase transition in the collective migration of tissue cells: Experiment and model
,”
Phys. Rev. E
74
,
061908
(
2006
).
34.
N.
Sepúlveda
,
L.
Petitjean
,
O.
Cochet
,
E.
Grasland-Mongrain
,
P.
Silberzan
, and
V.
Hakim
, “
Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model
,”
PLoS Comput. Biol.
9
,
e1002944
(
2013
).
35.
J.
Palacci
,
S.
Sacanna
,
A.
Steinberg
,
D.
Pine
, and
P.
Chaikin
, “
Living crystals of light-activated colloidal surfers
,”
Science
339
,
936
940
(
2013
).
36.
W.
van Saarloos
, “
Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence
,”
Phys. Rev. A
39
,
6367
6390
(
1989
).
37.
A.
Couairon
and
J.-M.
Chomaz
, “
Absolute and convective instabilities, front velocities and global modes in nonlinear systems
,”
Physica D
108
,
236
276
(
1997
).
38.
J. A.
Powell
,
A. C.
Newell
, and
C. K. R. T.
Jones
, “
Competition between generic and nongeneric fronts in envelope equations
,”
Phys. Rev. A
44
,
3636
3652
(
1991
).
39.
E.
Ben-Jacob
,
H.
Brand
,
G.
Dee
,
L.
Kramer
, and
J.
Langer
, “
Pattern propagation in nonlinear dissipative systems
,”
Physica D
14
,
348
364
(
1985
).
40.
U.
Ebert
and
W.
van Saarloos
, “
Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts
,”
Physica D
146
,
1
99
(
2000
).
41.
D.
Aronson
and
H.
Weinberger
, “
Multidimensional nonlinear diffusion arising in population genetics
,”
Adv. Math.
30
,
33
76
(
1978
).
42.
G. C.
Paquette
,
L.-Y.
Chen
,
N.
Goldenfeld
, and
Y.
Oono
, “
Structural stability and renormalization group for propagating fronts
,”
Phys. Rev. Lett.
72
,
76
79
(
1994
).
43.
W.
van Saarloos
, “
Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection
,”
Phys. Rev. A
37
,
211
229
(
1988
).
44.
K.-P.
Hadeler
and
F.
Rothe
, “
Travelling fronts in nonlinear diffusion equations
,”
J. Math. Biol.
2
,
251
263
(
1975
).
45.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 3rd ed. (
Springer
,
New York
,
2010
).
46.
H. A.
Dijkstra
,
F. W.
Wubs
,
A. K.
Cliffe
,
E.
Doedel
,
I. F.
Dragomirescu
,
B.
Eckhardt
,
A. Y.
Gelfgat
,
A.
Hazel
,
V.
Lucarini
,
A. G.
Salinger
,
E. T.
Phipps
,
J.
Sanchez-Umbria
,
H.
Schuttelaars
,
L. S.
Tuckerman
, and
U.
Thiele
, “
Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation
,”
Commun. Comput. Phys.
15
,
1
45
(
2014
).
47.
H.
Uecker
,
D.
Wetzel
, and
J. D. M.
Rademacher
, “
pde2path—A Matlab package for continuation and bifurcation in 2D elliptic systems
,”
Numer. Math. Theor. Methods Appl.
7
,
58
106
(
2014
).
48.
E.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions
,”
Int. J. Bifurc. Chaos
1
,
493
520
(
1991
).
49.
E. J.
Doedel
,
T. F.
Fairgrieve
,
B.
Sandstede
,
A. R.
Champneys
,
Y. A.
Kuznetsov
, and
X.
Wang
, “Auto-07p: Continuation and bifurcation software for ordinary differential equations,” Technical Report, 2007.
50.
If not stated otherwise, we employ pde2path.
51.
C.
Kuehn
, “
Numerical continuation and SPDE stability for the 2D cubic-quintic Allen-Cahn equation
,”
SIAM-ASA J. Uncertain. Quantif.
3
,
762
789
(
2015
).
52.
M.
Menzel
,
T.
Ohta
, and
H.
Löwen
, “
Active crystals and their stability
,”
Phys. Rev. E
89
,
022301
(
2014
).
53.
A. I.
Chervanyov
,
H.
Gomez
, and
U.
Thiele
, “
Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles
,”
Europhys. Lett.
115
,
68001
(
2016
).
54.
L.
Ophaus
, “Analysis of the active phase-field-crystal model,” Ph.D. thesis (Westfälische Wilhelms-Universität Münster, Münster, 2019).
55.
L. S.
Tuckerman
and
J.
Bechhoefer
, “
Dynamical mechanism for the formation of metastable phases: The case of two nonconserved order parameters
,”
Phys. Rev. A
46
,
3178
3192
(
1992
).
56.
A. J.
Álvarez-Socorro
,
C.
Castillo-Pinto
,
M. G.
Clerc
,
G.
González-Cortes
, and
M.
Wilson
, “
Front propagation transition induced by diffraction in a liquid crystal light valve
,”
Opt. Express
27
,
12391
(
2019
).
57.
A. G.
Ramm
, “
A simple proof of the Fredholm alternative and a characterization of the Fredholm operators
,”
Am. Math. Mon.
108
,
855
860
(
2001
).
58.
F.
Stegemerten
,
S. V.
Gurevich
, and
U.
Thiele
, “
Data supplement for `Bifurcations of front motion in passive and active Allen-Cahn-type equations'
,” (unpublished).
You do not currently have access to this content.