Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the “song system”), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus. This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals.

1
Alliende
,
J. A.
,
Mendez
,
J. M.
,
Goller
,
F.
, and
Mindlin
,
G. B.
, “
Hormonal acceleration of song development illuminates motor control mechanism in canaries
,”
Dev. Neurobiol.
70
(
14
),
943
960
(
2010
).
2
Alonso
,
L. M.
,
Alliende
,
J. A.
,
Goller
,
F.
, and
Mindlin
,
G. B.
, “
Low-dimensional dynamical model for the diversity of pressure patterns used in canary song
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
79
(
4 Pt 1
),
041929
(
2009
).
3
Alonso
,
L. M.
,
Alliende
,
J. A.
, and
Mindlin
,
G. B.
, “
Dynamical origin of complex motor patterns
,”
Eur. Phys. J. D
60
(
2
),
361
367
(
2010
).
4
Alonso
,
R. G.
,
Amador
,
A.
, and
Mindlin
,
G. B.
, “
An integrated model for motor control of song in Serinus canaria
,”
J. Phys.
110
(
3
),
127
139
(
2016
).
5
Alonso
,
R. G.
,
Trevisan
,
M. A.
,
Amador
,
A.
,
Goller
,
F.
, and
Mindlin
,
G. B.
, “
A circular model for song motor control in Serinus canaria
,”
Front. Comput. Neurosci.
9
,
41
(
2015
).
6
Amador
,
A.
and
Margoliash
,
D.
, “
A mechanism for frequency modulation in songbirds shared with humans
,”
J. Neurosci.
33
(
27
),
11136
11144
(
2013a
).
7
Amador
,
A.
,
Perl
,
Y. S.
,
Mindlin
,
G. B.
, and
Margoliash
,
D.
, “
Elemental gesture dynamics are encoded by song premotor cortical neurons
,”
Nature
495
(
7439
),
59
64
(
2013b
).
8
Amin
,
N.
,
Grace
,
J. A.
, and
Theunissen
,
F. E.
, “
Neural response to bird's own song and tutor song in the zebra finch field L and caudal mesopallium
,”
J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
190
(
6
),
469
489
(
2004
).
9
Ashmore
,
R. C.
,
Wild
,
J. M.
, and
Schmidt
,
M. F.
, “
Brainstem and forebrain contributions to the generation of learned motor behaviors for song
,”
J. Neurosci.
25
(
37
),
8543
8554
(
2005
).
10
Borisyuk
,
R. M.
and
Kirillov
,
A. B.
, “
Bifurcation analysis of a neural network model
,”
Biol. Cyber.
66
(
4
),
319
325
(
1992
).
11
Buzsáki
,
G.
,
Anastassiou
,
C. A.
, and
Koch
,
C.
, “
The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes
,”
Nat. Rev. Neurosci.
13
,
407
420
(
2012
).
12
Dima
,
G. C.
,
Copelli
,
M.
, and
Mindlin
,
G. B.
, “
Anticipated synchronization and zero-Lag phases in population neural models
,”
Int. J. Bifurc. Chaos
28
(
08
),
1830025
(
2018a
).
13
Dima
,
G. C.
,
Goldin
,
M.
, and
Mindlin
,
G. B.
, “
Modeling temperature manipulations in a circular model of birdsong production
,”
Papers Phys.
10
,
100002
(
2018b
).
14
Gardner
,
T.
,
Cecchi
,
G.
,
Magnasco
,
M.
,
Laje
,
R.
, and
Mindlin
,
G. B.
, “
Simple motor gestures for birdsongs
,”
Phys. Rev. Lett.
87
(
20
),
208101
(
2001
).
15
Henze
,
D. A.
,
Borhegyi
,
Z.
,
Csicsvari
,
J.
,
Mamiya
,
A.
,
Harris
,
K. D.
, and
Buzsaki
,
G.
, “
Intracellular features predicted by extracellular recordings in the hippocampus in vivo
,”
J. Neurophysiol.
84
(
1
),
390
400
(
2000
).
16
Herbert
,
C. T.
,
Boari
,
S.
,
Mindlin
,
G. B.
, and
Amador
A
(
2020
), “
A neural population model for birdsong production
,”
GitHub
, see .
17
Hoppensteadt
,
F. C.
and
Izhikevich
,
E. M.
,
Weakly Connected Neural Networks
(
Springer Science & Business Media
,
2012
).
18
Lassa Ortiz
,
J. N.
,
Herbert
,
C. T.
,
Mindlin
,
G. B.
, and
Amador
,
A.
, “
Significant instances in motor gestures of different songbird species
,”
Front. Phys.
7
,
142
(
2019
).
19
Lynch
,
G. F.
,
Okubo
,
T. S.
,
Hanuschkin
,
A.
,
Hahnloser
,
R. H.
, and
Fee
,
M. S.
, “
Rhythmic continuous-time coding in the songbird analog of vocal motor cortex
,”
Neuron
90
(
4
),
877
892
(
2016
).
20
Mindlin
,
G. B.
and
Laje
,
R.
,
The Physics of Birdsong
(
Springer-Verlag
,
Berlin
,
2006
).
21
Mooney
,
R.
, “
Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch
,”
J. Neurosci.
20
,
5420
5436
(
2000
).
22
Mooney
,
R.
, “
Neurobiology of song learning
,”
Curr. Opin. Neurobiol.
19
,
654
660
(
2009
).
23
Nottebohm
,
F.
,
Alvarez-Buylla
,
A.
,
Cynx
,
J.
,
Kirn
,
J.
,
Ling
,
C. Y.
,
Nottebohm
,
M.
, and
Williams
,
H.
, “
Song learning in birds: The relation between perception and production
,”
Philos. Trans. R. Soc. Lond Ser. B Biol. Sci.
329
(
1253
),
115
124
(
1990
).
24
Okubo
,
T. S.
,
Mackevicius
,
E. L.
,
Payne
,
H. L.
,
Lynch
,
G. F.
, and
Fee
,
M. S.
, “
Growth and splitting of neural sequences in songbird vocal development
,”
Nature
528
(
7582
),
352
357
(
2015
).
25
Ott
,
E.
and
Antonsen
,
T. M.
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
26
Picardo
,
M. A.
,
Merel
,
J.
,
Katlowitz
,
K. A.
,
Vallentin
,
D.
,
Okobi
,
D. E.
,
Benezra
,
S. E.
,
Clary
,
R. C.
,
Pnevmatikakis
,
E. A.
,
Paninski
,
L.
, and
Long
,
M. A.
, “
Population-level representation of a temporal sequence underlying song production in the zebra finch
,”
Neuron
90
(
4
),
866
876
(
2016
).
27
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, “
Numerical recipes in C
,”
Probab. in the Eng. Inf. Sci.
2
,
b1
b3
(
1988
).
28
Rauske
,
P. L.
,
Shea
,
S. D.
, and
Margoliash
,
D.
, “
State and neuronal class-dependent reconfiguration in the avian song system
,”
J. Neurophysiol.
89
,
1688
1701
(
2003
).
29
Roulet
,
J.
and
Mindlin
,
G. B.
, “
Average activity of excitatory and inhibitory neural populations
,”
Chaos
26
(
9
),
093104
(
2016
).
30
Suthers
,
R. A.
,
Goller
,
F.
, and
Hartley
,
R. S.
, “
Motor stereotypy and diversity in songs of mimic thrushes
,”
J. Neurobiol.
30
(
2
),
231
245
(
1996
).
31
Suthers
,
R. A.
and
Margoliash
,
D.
, “
Motor control of birdsong
,”
Curr. Opin. Neurobiol.
12
(
6
),
684
690
(
2002
).
32
Takahashi
,
D. Y.
,
Fenley
,
A. R.
,
Teramoto
,
Y.
,
Narayanan
,
D. Z.
,
Borjon
,
J. I.
,
Holmes
,
P.
, and
Ghazanfar
,
A. A.
, “
The developmental dynamics of marmoset monkey vocal production
,”
Science
349
(
6249
),
734
738
(
2015
).
33
Trevisan
,
M. A.
,
Mindlin
,
G. B.
, and
Goller
,
F.
, “
Nonlinear model predicts diverse respiratory patterns of birdsong
,”
Phys. Rev. Lett.
96
(
5
),
058103
(
2006
).
34
Tytell
,
E. D.
,
Holmes
,
P.
, and
Cohen
,
A. H.
, “
Spikes alone do not behavior make: Why neuroscience needs biomechanics
,”
Curr. Opin. Neurobiol.
21
(
5
),
816
822
(
2011
).
35
Ward
,
B. C.
,
Nordeen
,
E. J.
, and
Nordeen
,
K. W.
, “
Individual variation in neuron number predicts differences in the propensity for avian vocal imitation
,”
Proc. Natl. Acad. Sci. U.S.A.
95
,
1277
1282
(
1998
).
36
Wilson
,
H. R.
and
Cowan
,
J. D.
, “
A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
,”
Kybernetik
13
,
55
80
(
1973
).
You do not currently have access to this content.