By means of Galerkin–Koornwinder (GK) approximations, an efficient reduction approach to the Stuart–Landau (SL) normal form and center manifold is presented for a broad class of nonlinear systems of delay differential equations that covers the cases of discrete as well as distributed delays. The focus is on the Hopf bifurcation as a consequence of the critical equilibrium’s destabilization resulting from an eigenpair crossing the imaginary axis. The nature of the resulting Hopf bifurcation (super- or subcritical) is then characterized by the inspection of a Lyapunov coefficient easy to determine based on the model’s coefficients and delay parameters. We believe that our approach, which does not rely too much on functional analysis considerations but more on analytic calculations, is suitable to concrete situations arising in physics applications. Thus, using this GK approach to the Lyapunov coefficient and the SL normal form, the occurrence of Hopf bifurcations in the cloud-rain delay models of Koren and Feingold (KF) on one hand and Koren, Tziperman, and Feingold on the other are analyzed. Noteworthy is the existence of the KF model of large regions of the parameter space for which subcritical and supercritical Hopf bifurcations coexist. These regions are determined, in particular, by the intensity of the KF model’s nonlinear effects. “Islands” of supercritical Hopf bifurcations are shown to exist within a subcritical Hopf bifurcation “sea”; these islands being bordered by double-Hopf bifurcations occurring when the linearized dynamics at the critical equilibrium exhibit two pairs of purely imaginary eigenvalues.

1.
D. E.
Gilsinn
, in Delay Differential Equations: Recent Advances and New Directions (Springer, New York, 2009), pp. 155–202.
2.
T.
Faria
and
L. T.
Magalhães
,
J. Differ. Equations
122
,
181
(
1995
).
3.
B.
Hassard
and
Y. H.
Wan
,
J. Math. Anal. Appl.
63
,
297
(
1978
).
4.
B. D.
Hassard
,
N. D.
Kazarinoff
, and
Y. H.
Wan
, Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series Vol. 41 (Cambridge University Press, London, 1981).
5.
R.
Qesmi
,
M.
Babram
, and
M. L.
Hbid
,
Appl. Math. Comput.
175
,
932
(
2006
).
6.
W.
Wischert
,
A.
Wunderlin
,
A.
Pelster
,
M.
Olivier
, and
J.
Groslambert
,
Phys. Rev. E
49
,
203
(
1994
).
7.
S. N.
Chow
and
J.
Mallet-Paret
,
J. Differ. Equations
26
,
112
(
1977
).
8.
R.
Nussbaum
,
Trans. Am. Math. Soc.
238
,
139
(
1978
).
9.
S. A.
van Gils
, “
On a formula for the direction of Hopf bifurcation,
Stichting Mathematisch Centrum preprint TW 225/82 (Stichting Mathematisch Centrum, 1982)
.
10.
H. W.
Stech
,
J. Math. Anal. Appl.
109
,
472
(
1985
).
11.
S. L.
Das
and
A.
Chatterjee
,
Nonlinear Dyn.
30
,
323
(
2002
).
12.
A. H.
Nayfeh
,
Nonlinear Dyn.
51
,
483
(
2008
).
13.
J. K.
Hale
and
S. M.
Verduyn Lunel
, Introduction to Functional-Differential Equations, Applied Mathematical Sciences Vol. 99 (Springer-Verlag, New York, 1993).
14.
O.
Diekmann
,
S. A.
Van Gils
,
S.
Lunel
, and
H.-O.
Walther
,
Delay Equations: Functional-, Complex-, and Nonlinear Analysis
(
Springer Science & Business Media
,
2012
), Vol. 110.
15.
J. K.
Hale
,
L. T.
Magalhães
, and
W.
Oliva
,
Dynamics in Infinite Dimensions
(
Springer Science & Business Media
,
2006
), Vol. 47.
16.
N. D.
Kazarinoff
,
Y.-H.
Wan
, and
P.
van den Driessche
,
IMA J. Appl. Math.
21
,
461
(
1978
).
17.
G.
Stépán
,
Nonlinear Anal. Theory Methods Appl.
10
,
913
(
1986
).
18.
S. A.
Campbell
and
J.
Bélair
,
Can. Appl. Math. Q
3
,
137
(
1995
).
19.
E.
Stone
and
S. A.
Campbell
,
J. Nonlinear Sci.
14
,
27
(
2004
).
20.
S. A.
Campbell
, in Delay Differential Equations: Recent Advances and New Directions (Springer, New York, 2009), pp. 221–244.
21.
K.
Engelborghs
,
T.
Luzyanina
, and
D.
Roose
,
ACM Trans. Math. Softw.
28
,
1
(
2002
).
22.
J.
Sieber
,
K.
Engelborghs
,
T.
Luzyanina
,
G.
Samaey
, and
D.
Roose
, “DDE-BIFTOOL manual—Bifurcation analysis of delay differential equations,” arXiv:1406.7144 (2004).
23.
B.
Wage
, see https://dspace.library.uu.nl/handle/1874/296912 for “Normal form computations for Delay Differential Equations in dde-biftool,” master’s thesis (Utrecht University, Utrecht, the Netherlands, 2014).
24.
M. M.
Bosschaert
,
S. G.
Janssens
, and
Y. A.
Kuznetsov
,
SIAM J. Appl. Dyn. Syst.
19
,
252
(
2020
).
25.
D.
Breda
,
O.
Diekmann
,
M.
Gyllenberg
,
F.
Scarabel
, and
R.
Vermiglio
,
SIAM J. Appl. Dyn. Syst.
15
,
1
(
2016
).
26.
M. D.
Chekroun
,
M.
Ghil
,
H.
Liu
, and
S.
Wang
,
Disc. Cont. Dyn. Sys. A
36
,
4133
(
2016
).
27.
T. H.
Koornwinder
,
Can. Math. Bull.
27
,
205
(
1984
).
28.
M. D.
Chekroun
,
A.
Kröner
, and
H.
Liu
, in
Hamilton-Jacobi-Bellman Equations. Numerical Methods and Applications in Optimal Control
, edited by D. Kalise, K. Kunisch, and Z. Rao (De Gruyter, 2018), Vol. 21, pp. 61–96.
29.
J. D.
Crawford
,
Rev. Mod. Phys.
63
,
991
(
1991
).
30.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
1995
).
31.
M. D.
Chekroun
and
D.
Kondrashov
,
Chaos
27
,
093110
(
2017
).
32.
D.
Kondrashov
,
M. D.
Chekroun
, and
P.
Berloff
,
Fluids
3
,
21
(
2018
).
33.
M. D.
Chekroun
,
A.
Tantet
,
H. A.
Dijkstra
, and
J. D.
Neelin
,
J. Stat. Phys.
(published online).
34.
A.
Tantet
,
M. D.
Chekroun
,
J. D.
Neelin
, and
H. A.
Dijkstra
,
J. Stat. Phys.
(published online).
35.
A.
Tantet
,
M. D.
Chekroun
,
J. D.
Neelin
, and
H. A.
Dijkstra
,
J. Stat. Phys.
(published online).
36.
J. E.
Marsden
and
M.
McCracken
, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences Vol. 19 (Springer-Verlag, New York, 1976).
37.
M. D.
Chekroun
,
H.
Liu
, and
J. C.
McWilliams
,
J. Stat. Phys.
(published online).
38.
L.
Roques
,
M. D.
Chekroun
,
M.
Cristofol
,
S.
Soubeyrand
, and
M.
Ghil
,
Proc. R. Soc. A
470
,
20140349
(
2014
).
39.
M.
Ghil
,
M. D.
Chekroun
, and
G.
Stepan
,
Proc. R. Soc. A
471
,
20150097
(
2015
).
40.
A.
Keane
,
B.
Krauskopf
, and
C. M.
Postlethwaite
,
Chaos
27
,
114309
(
2017
).
41.
N.
Boers
,
M. D.
Chekroun
,
H.
Liu
,
D.
Kondrashov
,
D.-D.
Rousseau
,
A.
Svensson
,
M.
Bigler
, and
M.
Ghil
,
Earth Syst. Dyn.
8
,
1171
(
2017
).
42.
M.
Ghil
,
I.
Zaliapin
, and
S.
Thompson
,
Nonlinear Process. Geophys.
15
,
417
(
2008
).
43.
B.
Krauskopf
and
J.
Sieber
,
Proc. R. Soc. A
470
,
20140348
(
2014
).
44.
A.
Keane
,
B.
Krauskopf
, and
C.
Postlethwaite
,
SIAM J. Appl. Dyn. Syst.
14
,
1229
(
2015
).
45.
A.
Keane
,
B.
Krauskopf
, and
C. M.
Postlethwaite
,
SIAM J. Appl. Dyn. Syst.
15
,
1656
(
2016
).
46.
M.
Chekroun
,
M.
Ghil
, and
J. D.
Neelin
, in Advances in Nonlinear Geosciences, edited by A. Tsonis (Springer, 2018), pp. 1–33.
47.
A.
Keane
,
B.
Krauskopf
, and
H. A.
Dijkstra
,
Philos. Trans. R. Soc. A
377
,
20180121
(
2019
).
48.
V.
Kolmanovskii
and
A.
Myshkis
,
Introduction to the Theory and Applications of Functional Differential Equations
(
Springer Science & Business Media
,
2013
), Vol. 463.
49.
I.
Koren
and
G.
Feingold
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
12227
(
2011
).
50.
I.
Koren
,
E.
Tziperman
, and
G.
Feingold
,
Chaos
27
,
013107
(
2017
).
51.
H.
Brézis
,
Functional Analysis, Sobolev Spaces and Partial Differential Equations
(
Springer
,
2010
).
52.
R.
Curtain
and
H.
Zwart
,
An Introduction to Infinite-Dimensional Linear Systems Theory
(
Springer
,
1995
), Vol. 21.
53.
Bypassing efficiently the resolution of the infinite-dimensional Hamilton-Jacobi-Bellman equation associated with the optimal control problem of the original DDE; see Sec. 4.4 of Ref. 28.
54.
The formula (26) appeared in Appendix C of Ref. 26. Appendix A 4 provides details about the derivation of this formula.
55.
The latter approximation corresponds to the minimal dimension required to resolve accurately the dominant eigenpair of the KTF model. We recall that the approximation hN(t) is obtained according to (10).
56.
J.
Guckenheimer
and
P.
Holmes
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences Vol. 42 (Springer-Verlag, New York, 1990).
57.
We mention that these performances may be improved away from criticality by optimized deformations of the CM leading-order approximations; see Secs. 4 and 5 of Ref. 37.
58.
Note that a slight abuse of notation holds here. The term F(2) is indeed presented depending on the dummy variable X=(p,q), but actually, this term is bilinear and in that sense depends not only on X but also on an auxiliary variable X=(p,q). For instance, its 1st component is given by F1(2)(X,X)=app/y¯+2ax¯pq/y¯2ax¯2qq/y¯3. However, by making X=X, we recover the 1st component in (68). We have thus opted to denote F(2)(X,X) simply by F(2)(X). Similar remarks hold for the trilinear term F(3). See  Appendix B.
59.
K.
Gopalsamy
,
Stability and Oscillations in Delay Differential Equations of Population Dynamics
(
Springer Science & Business Media
,
2013
), Vol. 74.
60.
Here, this value of the Lyapunov coefficient is obtained for N=50, i.e., by using a 100-dimensional GK approximation.
61.
Our numerical analysis indicates that a#lies in between0.008648901372385and0.008648901794979. The corresponding first four eigenvalues as obtained from a 120D GK approximation are β1(τc)=0.000000000000921+i0.002886405353469, β2(τc)=β1(τc)¯, β3(τc)=0.000000000002492+i0.002886405882396, and β4(τc)=β3(τc)¯ and satisfy the characteristic equation (80) of the KF model up to machine precision.
62.
A.
Gritsun
,
Philos. Trans. R. Soc. A
371
,
20120336
(
2013
).
63.
O.
Pujol
and
A.
Jensen
,
Physica D
399
,
86
(
2019
).
64.
Figure 1 of Ref. 63 predicts a steady state whose x¯-component (H) is zero, which is excluded due to (62) when b and c are non-zero.
65.
S.
Busenberg
and
P.
van den Driessche
,
J. Math. Anal. Appl.
172
,
463
(
1993
).
66.
That is, a non-self-intersecting continuous loop in the plane, a loop being the image in the plane by a continuous function γ of an interval I (say [0, 1]) such that γ(0)=γ(1).
67.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
,
Phys. Rep.
531
,
173
(
2013
).
68.
X.
Han
,
M.
Wei
,
Q.
Bi
, and
J.
Kurths
,
Phys. Rev. E
97
,
012202
(
2018
).
69.
D.
Rosenfeld
,
Y.
Kaufman
, and
I.
Koren
,
Atmos. Chem. Phys.
6
,
2503
(
2006
).
70.
G.
Feingold
,
I.
Koren
,
T.
Yamaguchi
, and
J.
Kazil
, “
On the reversibility of transitions between closed and open cellular convection
,”
Atmos. Chem. Phys.
15
,
7351
(
2015
).
71.
J.
Carr
, Applications of Centre Manifold Theory, Applied Mathematical Sciences Vol. 35 (Springer-Verlag, New York, 1981), pp. vi+142.
72.
T.
Ma
and
S.
Wang
, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises Vol. 53 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005), pp. xiv+375.
73.
T.
Ma
and
S.
Wang
,
Phase Transition Dynamics
(
Springer
,
2014
).
74.
J.
Shen
,
T.
Tang
, and
L.-L.
Wang
, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics Vol. 41 (Springer, Heidelberg, 2011).
75.
L. F.
Shampine
and
S.
Thompson
,
Appl. Numer. Math.
37
,
441
(
2001
).
76.
A.
Bellen
and
M.
Zennaro
, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation (Oxford University Press, 2013).
You do not currently have access to this content.