Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive processes in the brain. In this study, we consider a neural mass model, rigorously obtained from the microscopic dynamics of an inhibitory spiking network with exponential synapses, able to autonomously generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation, and their frequencies are controlled by the synaptic time scale, the synaptic coupling, and the excitability of the neural population. Furthermore, we show that two inhibitory populations in a master–slave configuration with different synaptic time scales can display various collective dynamical regimes: damped oscillations toward a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when bidirectionally coupled, the two inhibitory populations can exhibit different types of θγ cross-frequency couplings (CFCs): phase-phase and phase-amplitude CFC. The coupling between θ and γ COs is enhanced in the presence of an external θ forcing, reminiscent of the type of modulation induced in hippocampal and cortex circuits via optogenetic drive.

1.
GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the adult mammalian brain. GABA performs its action by binding to GABAA or GABAB receptors.
2.
For what concerns the cases with an external forcing (i.e., non-autonomous systems), we have chosen to consider the time as an extra independent variable, therefore, to treat the system as autonomous, with an additional degree of freedom.
3.
T.
Akam
,
I.
Oren
,
L.
Mantoan
,
E.
Ferenczi
, and
D. M.
Kullmann
, “
Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling
,”
Nat. Neurosci.
15
(
5
),
763
(
2012
).
4.
D.
Angulo-Garcia
and
A.
Torcini
, “
Stable chaos in fluctuation driven neural circuits
,”
Chaos Solitons Fractals
69
(
0
),
233
245
(
2014
).
5.
M. I.
Banks
,
T. -B.
Li
, and
R. A.
Pearce
, “
The synaptic basis of GABAA, slow
,”
J. Neurosci.
18
(
4
),
1305
1317
(
1998
).
6.
M. I.
Banks
,
J. A.
White
, and
R. A.
Pearce
, “
Interactions between distinct GABAA circuits in hippocampus
,”
Neuron
25
(
2
),
449
457
(
2000
).
7.
W.
Bao
and
J.-Y.
Wu
, “
Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro
,”
J. Neurophysiol.
90
(
1
),
333
341
(
2003
).
8.
M. A.
Belluscio
,
K.
Mizuseki
,
R.
Schmidt
,
R.
Kempter
, and
G.
Buzsáki
, “
Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus
,”
J. Neurosci.
32
(
2
),
423
435
(
2012
).
9.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
(
1
),
9
20
(
1980
).
10.
H.
Bi
,
M.
Segneri
,
M.
di Volo
, and
A.
Torcini
, “
Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons
,”
Phys. Rev. Res.
2
(
1
),
013042
(
2020
).
11.
N.
Brunel
, “
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
,”
J. Comput. Neurosci.
8
(
3
),
183
208
(
2000
).
12.
N.
Brunel
and
V.
Hakim
, “
Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
,”
Neural. Comput.
11
(
1
),
1621
1671
(
1999
).
13.
J. L.
Butler
,
Y. A.
Hay
, and
O.
Paulsen
, “
Comparison of three gamma oscillations in the mouse entorhinal–hippocampal system
,”
Eur. J. Neurosci.
48
(
8
),
2795
2806
(
2018
).
14.
J. L.
Butler
,
P. R.
Mendonça
,
H. P.
Robinson
, and
O.
Paulsen
, “
Intrinsic cornu ammonis area 1 theta-nested gamma oscillations induced by optogenetic theta frequency stimulation
,”
J. Neurosci.
36
(
15
),
4155
4169
(
2016
).
15.
G.
Buzsáki
, “
Theta oscillations in the hippocampus
,”
Neuron
33
(
3
),
325
340
(
2002
).
16.
G.
Buzsaki
,
Rhythms of the Brain
, 1st ed. (
Oxford University Press
,
New York
,
2006
).
17.
G.
Buzsáki
and
X.-J.
Wang
, “
Mechanisms of gamma oscillations
,”
Annu. Rev. Neurosci.
35
,
203
(
2012
).
18.
R. T.
Canolty
and
R. T.
Knight
, “
The functional role of cross-frequency coupling
,”
Trends. Cogn. Sci.
14
(
11
),
506
515
(
2010
).
19.
R.
Capocelli
and
L.
Ricciardi
, “
Diffusion approximation and first passage time problem for a model neuron
,”
Kybernetik
8
(
6
),
214
223
(
1971
).
20.
L. L.
Colgin
,
T.
Denninger
,
M.
Fyhn
,
T.
Hafting
,
T.
Bonnevie
,
O.
Jensen
,
M. -B.
Moser
, and
E. I.
Moser
, “
Frequency of gamma oscillations routes flow of information in the hippocampus
,”
Nature
462
(
7271
),
353
(
2009
).
21.
S.
Coombes
and
Á.
Byrne
, Next generation neural mass models. in Nonlinear Dynamics in Computational Neuroscience, PoliTO Springer Series, edited by F. Corinto and A. Torcini (Springer, Cham, 2019), pp. 1–16.
22.
O.
David
and
K. J.
Friston
, “
A neural mass model for MEG/EEG: Coupling and neuronal dynamics
,”
NeuroImage
20
(
3
),
1743
1755
(
2003
).
23.
F.
Devalle
,
E.
Montbrió
, and
D.
Pazó
, “
Dynamics of a large system of spiking neurons with synaptic delay
,”
Phys. Rev. E
98
(
4
),
042214
(
2018
).
24.
F.
Devalle
,
A.
Roxin
, and
E.
Montbrió
, “
Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks
,”
PLoS Comput. Biol.
13
(
12
),
e1005881
(
2017
).
25.
M.
di Volo
and
A.
Torcini
, “
Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses
,”
Phys. Rev. Lett.
121
(
12
),
128301
(
2018
).
26.
G.
Dumont
,
G. B.
Ermentrout
, and
B.
Gutkin
, “
Macroscopic phase-resetting curves for spiking neural networks
,”
Phys. Rev. E
96
(
4
),
042311
(
2017
).
27.
G. B.
Ermentrout
and
N.
Kopell
, “
Parabolic bursting in an excitable system coupled with a slow oscillation
,”
SIAM J. Appl. Math.
46
(
2
),
233
253
(
1986
).
28.
D. S.
Goldobin
and
A. V.
Dolmatova
, “
Ott-Antonsen ansatz truncation of a circular cumulant series
,”
Phys. Rev. Res.
1
(
3
),
033139
(
2019
).
29.
B.
Hangya
,
Z.
Borhegyi
,
N.
Szilágyi
,
T. F.
Freund
, and
V.
Varga
, “
GABAergic neurons of the medial septum lead the hippocampal network during theta activity
,”
J. Neurosci.
29
(
25
),
8094
8102
(
2009
).
30.
E. M.
Holz
,
M.
Glennon
,
K.
Prendergast
, and
P.
Sauseng
, “
Theta–gamma phase synchronization during memory matching in visual working memory
,”
Neuroimage
52
(
1
),
326
335
(
2010
).
31.
A.
Hyafil
,
A.-L.
Giraud
,
L.
Fontolan
, and
B.
Gutkin
, “
Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions
,”
Trends. Neurosci.
38
(
11
),
725
740
(
2015
).
32.
S.
Jahnke
,
R.-M.
Memmesheimer
, and
M.
Timme
, “
Stable irregular dynamics in complex neural networks
,”
Phys. Rev. Lett.
100
,
048102
(
2008
).
33.
B. H.
Jansen
and
V. G.
Rit
, “
Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
,”
Biol. Cybern.
73
(
4
),
357
366
(
1995
).
34.
O.
Jensen
and
L. L.
Colgin
, “
Cross-frequency coupling between neuronal oscillations
,”
Trends. Cogn. Sci.
11
(
7
),
267
269
(
2007
).
35.
J.
Kaplan
and
J.
Yorke
, “
Functional differential equations and approximation of fixed points
,”
Lecture Notes Math.
730
,
204
227
(
1979
).
36.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer Science & Business Media
,
2012
), Vol 19.
37.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer Science & Business Media
,
2013
), Vol. 112.
38.
G.
Lajoie
,
K. K.
Lin
, and
E.
Shea-Brown
, “
Chaos and reliability in balanced spiking networks with temporal drive
,”
Phys. Rev. E
87
,
052901
(
2013
).
39.
B.
Lega
,
J.
Burke
,
J.
Jacobs
, and
M. J.
Kahana
, “
Slow-theta-to-gamma phase–amplitude coupling in human hippocampus supports the formation of new episodic memories
,”
Cereb. Cortex
26
(
1
),
268
278
(
2014
).
40.
J. E.
Lisman
and
O.
Jensen
, “
The theta-gamma neural code
,”
Neuron
77
(
6
),
1002
1016
(
2013
).
41.
M.
London
,
A.
Roth
,
L.
Beeren
,
M.
Häusser
, and
P. E.
Latham
, “
Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
,”
Nature
466
,
123
127
(
2010
).
42.
S.
Luccioli
and
A.
Politi
, “
Irregular collective behavior of heterogeneous neural networks
,”
Phys. Rev. Lett.
105
(
15
),
158104+
(
2010
).
43.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons
,”
Neural Comput.
25
(
12
),
3207
3234
(
2013
).
44.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Macroscopic complexity from an autonomous network of networks of theta neurons
,”
Front. Comput. Neurosci.
8
,
145
(
2014
).
45.
A.
Mazzoni
,
N.
Brunel
,
S.
Cavallari
,
N. K.
Logothetis
, and
S.
Panzeri
, “
Cortical dynamics during naturalistic sensory stimulations: Experiments and models
,”
J. Physiol. Paris
105
(
1-3
),
2
15
(
2011
).
46.
A.
Mazzoni
,
S.
Panzeri
,
N. K.
Logothetis
, and
N.
Brunel
, “
Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons
,”
PLoS Comput. Biol.
4
(
12
),
e1000239
(
2008
).
47.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
(
2
),
021028
(
2015
).
48.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
49.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
50.
H.
Pastoll
,
L.
Solanka
,
M. C.
van Rossum
, and
M. F.
Nolan
, “
Feedback inhibition enables theta-nested gamma oscillations and grid firing fields
,”
Neuron
77
(
1
),
141
154
(
2013
).
51.
D.
Pazó
and
E.
Montbrió
, “
Low-dimensional dynamics of populations of pulse-coupled oscillators
,”
Phys. Rev. X
4
(
1
),
011009
(
2014
).
52.
A.
Pikovsky
,
M.
Zaks
,
M.
Rosenblum
,
G.
Osipov
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillations in terms of periodic orbits
,”
Chaos
7
(
4
),
680
687
(
1997
).
53.
I.
Ratas
and
K.
Pyragas
, “
Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons
,”
Phys. Rev. E
100
(
5
),
052211
(
2019
).
54.
M.
Rosenblum
,
P.
Tass
,
J.
Kurths
,
J.
Volkmann
,
A.
Schnitzler
, and
H.-J.
Freund
, “Detection of phase locking from noisy data, application to magnetoencephalography,” in Chaos In Brain? (World Scientific, 2000), pp. 34–51.
55.
M. P.
Sceniak
and
M. B.
MacIver
, “
Slow gaba a mediated synaptic transmission in rat visual cortex
,”
BMC Neurosci.
9
(
1
),
8
(
2008
).
56.
A.
Sirota
,
S.
Montgomery
,
S.
Fujisawa
,
Y.
Isomura
,
M.
Zugaro
, and
G.
Buzsáki
, “
Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm
,”
Neuron
60
(
4
),
683
697
(
2008
).
57.
P.
So
,
T. B.
Luke
, and
E.
Barreto
, “
Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty
,”
Phys. D: Nonlinear Phenom.
267
,
16
26
(
2014
).
58.
A.
Treves
, “
Mean-field analysis of neuronal spike dynamics
,”
Netw. Comput. Neural Syst.
4
(
3
),
259
284
(
1993
).
59.
E.
Ullner
and
A.
Politi
, “
Self-sustained irregular activity in an ensemble of neural oscillators
,”
Phys. Rev. X
6
(
1
),
011015
(
2016
).
60.
F.
Varela
,
J.-P.
Lachaux
,
E.
Rodriguez
, and
J.
Martinerie
, “
The brainweb: Phase synchronization and large-scale integration
,”
Nat. Rev. Neurosci.
2
(
4
),
229
(
2001
).
61.
J. A.
White
,
M. I.
Banks
,
R. A.
Pearce
, and
N. J.
Kopell
, “
Networks of interneurons with fast and slow γ-aminobutyric acid type a (GABAA) kinetics provide substrate for mixed gamma-theta rhythm
,”
Proc. Natl. Acad. Sci. U.S.A.
97
(
14
),
8128
8133
(
2000
).
62.
M. A.
Whittington
and
R. D.
Traub
, “
Interneuron diversity series: Inhibitory interneurons and network oscillations in vitro
,”
Trends. Neurosci.
26
(
12
),
676
682
(
2003
).
63.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
You do not currently have access to this content.