In this paper, we use machine learning strategies aiming to predict chaotic time series obtained from the Lorenz system. Such strategies prove to be successful in predicting the evolution of dynamical variables over a short period of time. Transitions between the regimes and their duration can be predicted with great accuracy by means of counting and classification strategies, for which we train multi-layer perceptron ensembles. Even for the longest regimes the occurrences and duration can be predicted. We also show the use of an echo state network to generate data of the time series with an accuracy of up to a few hundreds time steps. The ability of the classification technique to predict the regime duration of more than 11 oscillations corresponds to around 10 Lyapunov times.

1.
P.
Amil
,
M. C.
Soriano
, and
C.
Masoller
, “
Machine learning algorithms for predicting the amplitude of chaotic laser pulses
,”
Chaos
29
(
11
),
113111
(
2019
).
2.
J.
Pathak
,
A.
Wikner
,
R.
Fussell
,
S.
Chandra
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model
,”
Chaos
28
(
4
),
041101
(
2018
).
3.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
(
2
),
024102
(
2018
).
4.
M.
Lellep
,
J.
Prexl
,
M.
Linkmann
, and
B.
Eckhardt
, “
Using machine learning to predict extreme events in the hénon map
,”
Chaos
30
(
1
),
013113
(
2020
).
5.
M. W.
Gardner
and
S. R.
Dorling
, “
Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences
,”
Atmos. Environ.
32
(
14–15
),
2627
(
1998
).
6.
C.
Ikuta
,
Y.
Uwate
, and
Y.
Nishio
, “Chaos glial network connected to multi-layer perceptron for solving two-spiral problem,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (IEEE, 2010), p. 1360.
7.
D. P.
Mandic
and
J.
Chambers
,
Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability
(
John Wiley & Sons, Inc.
,
2001
).
8.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
(
12
),
121102
(
2017
).
9.
I. B.
Yildiz
,
H.
Jaeger
, and
S. J.
Kiebel
, “
Re-visiting the echo state property
,”
Neural Netw.
35
,
1
(
2012
).
10.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
11.
E.
Barreto
,
B. R.
Hunt
,
C.
Grebogi
, and
J. A.
Yorke
, “
From high dimensional chaos to stable periodic orbits: The structure of parameter space
,”
Phys. Rev. Lett.
78
(
24
),
4561
(
1997
).
12.
J. A. C.
Gallas
, “
Dissecting shrimps: Results for some one-dimensional physical models
,”
Physica A
202
(
1–2
),
196
(
1994
).
13.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
(
1963
).
14.
L. O.
Chua
,
The Genesis of Chua’s Circuit
(
University of California Berkeley
,
1992
).
15.
M. W.
Beims
and
J. A. C.
Gallas
, “
Alignment of Lyapunov vectors: A quantitative criterion to predict catastrophes?
,”
Sci. Rep.
6
,
37102
(
2016
).
16.
É
Mercier
,
A.
Even
,
E.
Mirisola
,
D.
Wolfersberger
, and
M.
Sciamanna
, “
Numerical study of extreme events in a laser diode with phase-conjugate optical feedback
,”
Phys. Rev. E
91
(
4
),
042914
(
2015
).
17.
M. W.
Beims
and
J.
Gallas
, “
Predictability of the onset of spiking and bursting in complex chemical reactions
,”
Phys. Chem. Chem. Phys.
20
,
18539
(
2018
).
18.
R.
Bonazzola
,
A. A.
Hnilo
,
M. G.
Kovalsky
, and
J. R.
Tredicce
, “
Features of the extreme events observed in an all-solid-state laser with a saturable absorber
,”
Phys. Rev. A
92
(
5
),
053816
(
2015
).
19.
V.
Balakrishnan
,
C.
Nicolis
, and
G.
Nicolis
, “
Extreme value distributions in chaotic dynamics
,”
J. Stat. Phys.
80
(
1–2
),
307
(
1995
).
20.
C.
Nicolis
and
G.
Nicolis
, “
Extreme events in multivariate deterministic systems
,”
Phys. Rev. E
85
(
5
),
056217
(
2012
).
21.
J. C.
Butcher
,
Numerical Methods for Ordinary Differential Equations
(
John Wiley & Sons
,
2016
).
22.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
(
3
),
285
(
1985
).
23.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
24.
R. Y.
Rubinstein
and
D. P.
Kroese
,
The Cross-entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning
(
Springer Science & Business Media
,
2013
).
25.
See https://github.com/kalekiu/easyesn for information about the easyesn library.
You do not currently have access to this content.