Studying natural phenomena via the complex network approach makes it possible to quantify the time-evolving structures with too many elements and achieve a deeper understanding of interactions among the components of a system. In this sense, solar flare as a complex system with the chaotic behavior could be better characterized by the network parameters. Here, we employed an unsupervised network-based method to recognize the position and occurrence time of the solar flares by using the ultraviolet emission (1600 Å) recorded by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory. Three different regions, the flaring active regions, the non-flaring active regions, and the quiet-Sun regions, were considered to study the variations of the network parameters in the presence and absence of flaring phases in various datasets over time intervals of several hours. The whole parts of the selected datasets were partitioned into sub-windows to construct networks based on computing the Pearson correlation between time series of the region of interest and intensities. Analyzing the network parameters such as the clustering coefficient, degree centrality, characteristic length, and PageRank verified that flare triggering has an influence on the network parameters around the flare occurrence time and close to the location of flaring. It was found that the values of the clustering coefficient and characteristic length approach those obtained for the corresponding random network in the flaring phase. These findings could be used for detecting the occurrence times and locations of the region at ultraviolet images.

1
E.
Priest
,
Magnetohydrodynamics of the Sun
(
Cambridge University Press
,
2014
).
2
R. E.
Gershberg
,
Solar-type Activity in Main-sequence Stars
(
Springer Science & Business Media
,
2005
).
3
W.
Fajardo-Mendieta
,
J.
Martínez-Oliveros
,
J.
Alvarado-Gómez
, and
B.
Calvo-Mozo
, “
Impulsivity parameter for solar flares
,”
Astrophys. J.
818
(
1
),
56
(
2016
).
4
C. E.
Parnell
and
I.
De Moortel
, “
A contemporary view of coronal heating
,”
Philos. Trans. R. Soc. A
370
(
1970
),
3217
3240
(
2012
).
5
E.
Parker
, “
Magnetic neutral sheets in evolving fields-part two-formation of the solar corona
,”
Astrophys. J.
264
,
642
(
1983
).
6
J.
Klimchuk
and
S.
Bradshaw
, “
Are chromospheric nanoflares a primary source of coronal plasma?
,”
Astrophys. J.
791
(
1
),
60
(
2014
).
7
M. J.
Aschwanden
,
T. D.
Tarbell
,
R. W.
Nightingale
,
C. J.
Schrijver
,
C. C.
Kankelborg
,
P.
Martens
,
H. P.
Warren
et al., “
Time variability of the ‘quiet’ sun observed with trace. II. Physical parameters, temperature evolution, and energetics of extreme-ultraviolet nanoflares
,”
Astrophys. J.
535
(
2
),
1047
(
2000
).
8
E.
Parker
, “
Nanoflares and the solar x-ray corona
,”
Astrophys. J.
330
,
474
479
(
1988
).
9
A. K.
Dupree
and
A. O.
Benz
, in Stars as Suns: Activity, Evolution and Planets (Astronomical Society of the Pacific, 2004), Vol. 219.
10
L.
Fletcher
, “
Ultra-violet footpoints as tracers of coronal magnetic connectivity and restructuring during a solar flare
,”
Astron. Astrophys.
493
(
1
),
241
250
(
2009
).
11
J.
Qiu
, “
Observational analysis of magnetic reconnection sequence
,”
Astrophys. J.
692
(
2
),
1110
(
2009
).
12
H.
Hudson
, “
Solar flares, microflares, nanoflares, and coronal heating
,”
Sol. Phys.
133
(
2
),
357
369
(
1991
).
13
A. O.
Benz
and
S.
Krucker
, “
Heating events in the quiet solar corona
,”
Sol. Phys.
182
(
2
),
349
363
(
1998
).
14
E.
Tajfirouze
and
H.
Safari
, “
Can a nanoflare model of extreme-ultraviolet irradiances describe the heating of the solar corona?
,”
Astrophys. J.
744
(
2
),
113
(
2011
).
15
M. R.
Bareford
,
P. K.
Browning
, and
R. A.
Van der Linden
, “
A nanoflare distribution generated by repeated relaxations triggered by kink instability
,”
Astron. Astrophys.
521
,
A70
(
2010
).
16
S.
Terzo
,
F.
Reale
,
M.
Miceli
,
R.
Kano
,
S.
Tsuneta
, and
J.
Klimchuk
, “Nanoflare evidence from analysis of the x-ray variability of an active region observed with Hinode/xrt,” arXiv:1201.5482 (2012).
17
M. L.
Fuentes
and
J. A.
Klimchuk
, “
Two-dimensional cellular automaton model for the evolution of active region coronal plasmas
,”
Astrophys. J.
799
(
2
),
128
(
2015
).
18
P.
Testa
,
B.
De Pontieu
,
J.
Martínez-Sykora
,
E.
DeLuca
,
V.
Hansteen
,
J.
Cirtain
,
A.
Winebarger
,
L.
Golub
,
K.
Kobayashi
,
K.
Korreck
et al., “
Observing coronal nanoflares in active region moss
,”
Astrophys. J. Lett.
770
(
1
),
L1
(
2013
).
19
A. R.
Winebarger
,
R. W.
Walsh
,
R.
Moore
,
B.
De Pontieu
,
V.
Hansteen
,
J.
Cirtain
,
L.
Golub
,
K.
Kobayashi
,
K.
Korreck
,
C.
DeForest
et al., “
Detecting nanoflare heating events in subarcsecond inter-moss loops using Hi-C
,”
Astrophys. J.
771
(
1
),
21
(
2013
).
20
J.
Reep
,
S.
Bradshaw
, and
R.
McAteer
, “
On the sensitivity of the goes flare classification to properties of the electron beam in the thick-target model
,”
Astrophys. J.
778
(
1
),
76
(
2013
).
21
M. J.
Aschwanden
and
S. L.
Freeland
, “
Automated solar flare statistics in soft x-rays over 37 years of goes observations: The invariance of self-organized criticality during three solar cycles
,”
Astrophys. J.
754
(
2
),
112
(
2012
).
22
A.
Garcia-Rigo
,
M.
Hernández-Pajares
,
J.
Juan
, and
J.
Sanz
, “
Solar flare detection system based on global positioning system data: First results
,”
Adv. Space Res.
39
(
5
),
889
895
(
2007
).
23
E.
Jonas
,
M.
Bobra
,
V.
Shankar
,
J. T.
Hoeksema
, and
B.
Recht
, “
Flare prediction using photospheric and coronal image data
,”
Sol. Phys.
293
(
3
),
48
(
2018
).
24
N.
Alipour
,
F.
Mohammadi
, and
H.
Safari
, “
Prediction of flares within 10 days before they occur on the sun
,”
Astrophys. J. Suppl. Ser.
243
,
20
(
2019
).
25
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
(
1
),
47
(
2002
).
26
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
(
2
),
167
256
(
2003
).
27
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
(
4–5
),
175
308
(
2006
).
28
L. d. F.
Costa
,
F. A.
Rodrigues
,
G.
Travieso
, and
P. R.
Villas Boas
, “
Characterization of complex networks: A survey of measurements
,”
Adv. Phys.
56
(
1
),
167
242
(
2007
).
29
R.
Cohen
and
S.
Havlin
,
Complex Networks: Structure, Robustness and Function
(
Cambridge University Press
,
2010
).
30
L. d. F.
Costa
,
O. N.
Oliveira
, Jr.,
G.
Travieso
,
F. A.
Rodrigues
,
P. R.
Villas Boas
,
L.
Antiqueira
,
M. P.
Viana
, and
L. E.
Correa Rocha
, “
Analyzing and modeling real-world phenomena with complex networks: A survey of applications
,”
Adv. Phys.
60
(
3
),
329
412
(
2011
).
31
B.
Müller
,
J.
Reinhardt
, and
M. T.
Strickland
,
Neural Networks: An Introduction
(
Springer Science & Business Media
,
2012
).
32
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
33
S.
Abe
and
N.
Suzuki
, “
Scale-free network of earthquakes
,”
Europhys. Lett.
65
(
4
),
581
(
2004
).
34
S.
Abe
and
N.
Suzuki
, “
Small-world structure of earthquake network
,”
Physica A
337
(
1–2
),
357
362
(
2004
).
35
N.
Lotfi
and
A.
Darooneh
, “
The earthquakes network: The role of cell size
,”
Eur. Phys. J. B
85
(
1
),
23
(
2012
).
36
N.
Lotfi
and
A. H.
Darooneh
, “
Nonextensivity measure for earthquake networks
,”
Physica A
392
(
14
),
3061
3065
(
2013
).
37
A. H.
Darooneh
and
N.
Lotfi
, “
Active and passive faults detection by using the Pagerank algorithm
,”
Europhys. Lett.
107
(
4
),
49001
(
2014
).
38
S.
Rezaei
,
A. H.
Darooneh
,
N.
Lotfi
, and
N.
Asaadi
, “
The earthquakes network: Retrieving the empirical seismological laws
,”
Physica A
471
,
80
87
(
2017
).
39
N.
Lotfi
,
A. H.
Darooneh
, and
F. A.
Rodrigues
, “
Centrality in earthquake multiplex networks
,”
Chaos
28
(
6
),
063113
(
2018
).
40
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J. Spec. Top.
174
(
1
),
157
179
(
2009
).
41
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
The backbone of the climate network
,”
Europhys. Lett.
87
(
4
),
48007
(
2009
).
42
C. J.
Stam
and
J. C.
Reijneveld
, “
Graph theoretical analysis of complex networks in the brain
,”
Nonlinear Biomed. Phys.
1
(
1
),
3
(
2007
).
43
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
198
(
2009
).
44
X.
Ma
and
L.
Gao
, “
Biological network analysis: Insights into structure and functions
,”
Brief. Funct. Genomics
11
(
6
),
434
442
(
2012
).
45
F.
Daei
,
H.
Safari
, and
N.
Dadashi
, “
Complex network for solar active regions
,”
Astrophys. J.
845
(
1
),
36
(
2017
).
46
A.
Gheibi
,
H.
Safari
, and
M.
Javaherian
, “
The solar flare complex network
,”
Astrophys. J.
847
(
2
),
115
(
2017
).
47
Y.
Zou
,
M.
Small
,
Z.
Liu
, and
J.
Kurths
, “
Complex network approach to characterize the statistical features of the sunspot series
,”
New J. Phys.
16
(
1
),
013051
(
2014
).
48
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
13
),
4972
4975
(
2008
).
49
J. R.
Lemen
,
D. J.
Akin
,
P. F.
Boerner
,
C.
Chou
,
J. F.
Drake
,
D. W.
Duncan
,
C. G.
Edwards
,
F. M.
Friedlaender
,
G. F.
Heyman
,
N. E.
Hurlburt
et al., “The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO),” in The Solar Dynamics Observatory (Springer, 2011), pp. 17–40.
50
M.
Baiesi
and
M.
Paczuski
, “
Scale-free networks of earthquakes and aftershocks
,”
Phys. Rev. E
69
(
6
),
066106
(
2004
).
51
K.
Watanabe
,
S.
Masuda
, and
T.
Segawa
, “
Hinode flare catalogue
,”
Sol. Phys.
279
,
317
322
(
2012
).
52
See http://www.solarmonitor.org for checking the type of flares and their duration.
53
S.
Arish
,
M.
Javaherian
,
H.
Safari
, and
A.
Amiri
, “
Extraction of active regions and coronal holes from EUV images using the unsupervised segmentation method in the Bayesian framework
,”
Sol. Phys.
291
(
4
),
1209
1224
(
2016
).
54
E.
Tajfirouze
and
H.
Safari
, “
Can a nanoflare model of extreme-ultraviolet irradiances describe the heating of the solar corona?
,”
Astrophys. J.
744
,
113
(
2012
).
55
M.
Noori
,
M.
Javaherian
,
H.
Safari
, and
H.
Nadjari
, “
Statistics of photospheric supergranular cells observed by SDO/HMI
,”
Adv. Space Res.
64
,
504
513
(
2019
).
56
M.
Bazarghan
,
H.
Safari
,
D. E.
Innes
,
E.
Karami
, and
S. K.
Solanki
, “
A nanoflare model for active region radiance: Application of artificial neural networks
,”
Astron. Astrophys.
492
,
L13
L16
(
2008
).
57
A. D.
Broido
and
A.
Clauset
, “
Scale-free networks are rare
,”
Nat. Commun.
10
,
1017
1026
(
2019
).
58
N.
Alipour
and
H.
Safari
, “
Statistical properties of solar coronal bright points
,”
Astrophys. J.
807
,
175
(
2015
).
59
A.
Pauluhn
and
S. K.
Solanki
, “
A nanoflare model of quiet Sun EUV emission
,”
A&A
462
,
311
322
(
2007
).
You do not currently have access to this content.