The recurrence analysis of dynamic systems has been studied since Poincaré’s seminal work. Since then, several approaches have been developed to study recurrence properties in nonlinear dynamical systems. In this work, we study the recently developed entropy of recurrence microstates. We propose a new quantifier, the maximum entropy (). The new concept uses the diversity of microstates of the recurrence plot and is able to set automatically the optimum recurrence neighborhood (—vicinity), turning the analysis free of the vicinity parameter. In addition, turns out to be a novel quantifier of dynamical properties itself. We apply and the optimum to deterministic and stochastic systems. The quantifier has a higher correlation with the Lyapunov exponent and, since it is a parameter-free measure, a more useful recurrence quantifier of time series.
Skip Nav Destination
,
,
,
,
,
,
,
Article navigation
April 2020
Research Article|
April 17 2020
Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems Available to Purchase
T. L. Prado
;
T. L. Prado
a)
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 81531-980, Brazil
Search for other works by this author on:
G. Corso
;
G. Corso
2
Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte
, Natal 59078-970, Brazil
Search for other works by this author on:
G. Z. dos Santos Lima
;
G. Z. dos Santos Lima
2
Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte
, Natal 59078-970, Brazil
3
Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte
, Natal 59078-970, Brazil
Search for other works by this author on:
R. C. Budzinski
;
R. C. Budzinski
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 81531-980, Brazil
Search for other works by this author on:
B. R. R. Boaretto
;
B. R. R. Boaretto
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 81531-980, Brazil
Search for other works by this author on:
F. A. S. Ferrari;
F. A. S. Ferrari
4
Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri
, Janaúba 39447-790, Brazil
Search for other works by this author on:
E. E. N. Macau
;
E. E. N. Macau
5
Laboratório Associado de Computação e Matemática Aplicada, Instituto Nacional de Pesquisas Espaciais
, São José dos Campos 12227-010, Brazil
6
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo
, São Jose Dos Campos 12231-280, Brazil
Search for other works by this author on:
S. R. Lopes
S. R. Lopes
b)
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 81531-980, Brazil
Search for other works by this author on:
T. L. Prado
1,a)
G. Corso
2
G. Z. dos Santos Lima
2,3
R. C. Budzinski
1
B. R. R. Boaretto
1
F. A. S. Ferrari
4
E. E. N. Macau
5,6
S. R. Lopes
1,b)
1
Departamento de Física, Universidade Federal do Paraná
, Curitiba 81531-980, Brazil
2
Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte
, Natal 59078-970, Brazil
3
Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte
, Natal 59078-970, Brazil
4
Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri
, Janaúba 39447-790, Brazil
5
Laboratório Associado de Computação e Matemática Aplicada, Instituto Nacional de Pesquisas Espaciais
, São José dos Campos 12227-010, Brazil
6
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo
, São Jose Dos Campos 12231-280, Brazil
a)
Author to whom correspondence should be addressed: [email protected]
b)
Electronic mail: [email protected]
Chaos 30, 043123 (2020)
Article history
Received:
August 27 2019
Accepted:
March 27 2020
Citation
T. L. Prado, G. Corso, G. Z. dos Santos Lima, R. C. Budzinski, B. R. R. Boaretto, F. A. S. Ferrari, E. E. N. Macau, S. R. Lopes; Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems. Chaos 1 April 2020; 30 (4): 043123. https://doi.org/10.1063/1.5125921
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Rogue waves: Theory, methods, and applications—30 years after the Draupner wave
Zhenya Yan, Boris A. Malomed, et al.
Anosov properties of a symplectic map with time-reversal symmetry
Ken-ichi Okubo, Ken Umeno
Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology
Eugene Tan, Shannon Algar, et al.
Related Content
Quantifying entropy using recurrence matrix microstates
Chaos (August 2018)
Recurrence microstates for machine learning classification
Chaos (July 2024)
Recurrence plots and Shannon entropy for a dynamical analysis of asynchronisms in noninvasive mechanical ventilation
Chaos (March 2007)
Transfer entropy on symbolic recurrences
Chaos (June 2019)
Stickiness and recurrence plots: An entropy-based approach
Chaos (March 2023)