The dynamics of three three-dimensional repressilators globally coupled by a quorum sensing mechanism was numerically studied. This number (three) of coupled repressilators is sufficient to obtain such a set of self-consistent oscillation frequencies of signal molecules in the mean field that results in the appearance of self-organized quasiperiodicity and its complex evolution over wide areas of model parameters. Numerically analyzing the invariant curves as a function of coupling strength, we observed torus doubling, three torus arising via quasiperiodic Hopf bifurcation, the emergence of resonant cycles, and secondary Neimark–Sacker bifurcation. A gradual increase in the oscillation amplitude leads to chaotizations of the tori and to the birth of weak, but multidimensional chaos.

1.
P. S.
Landa
,
Nonlinear Oscillations and Waves in Dynamical Systems
(
Springer Science & Business Media
,
2013
), Vol. 360.
2.
V. S.
Anishchenko
,
T.
Vadivasova
, and
G.
Strelkova
,
Deterministic Nonlinear Systems
(
Springer International Publishing
,
Switzerland
,
2014
), Vol. 294.
3.
A.
Balanov
,
N.
Janson
,
D.
Postnov
, and
O.
Sosnovtseva
,
Synchronization: From Simple to Complex
(
Springer Science & Business Media
,
2008
).
4.
C.
Froeschlé
,
M.
Guzzo
, and
E.
Lega
, “
Graphical evolution of the Arnold web: From order to chaos
,”
Science
289
,
2108
2110
(
2000
).
5.
V.
Anishchenko
and
S.
Nikolaev
, “
Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations
,”
Tech. Phys. Lett.
31
,
853
855
(
2005
).
6.
A.
Kuznetsov
,
S.
Kuznetsov
,
E.
Mosekilde
, and
N.
Stankevich
, “
Generators of quasiperiodic oscillations with three-dimensional phase space
,”
Eur. Phys. J. Spec. Top.
222
,
2391
2398
(
2013
).
7.
N.
Stankevich
and
E.
Volkov
, “
Multistability in a three-dimensional oscillator: Tori, resonant cycles and chaos
,”
Nonlinear Dyn.
94
,
2455
2467
(
2018
).
8.
L. D.
Landau
, “
On the problem of turbulence
,”
Dokl. Akad. Nauk USSR
44
,
311
(
1944
).
9.
H.-T.
Moon
,
P.
Huerre
, and
L.
Redekopp
, “
Three-frequency motion and chaos in the Ginzburg–Landau equation
,”
Phys. Rev. Lett.
49
,
458
(
1982
).
10.
N.
Stankevich
,
A.
Kuznetsov
, and
E.
Seleznev
, “
Quasi-periodic bifurcations of four-frequency tori in the ring of five coupled van der Pol oscillators with different types of dissipative coupling
,”
Tech. Phys.
62
,
971
974
(
2017
).
11.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
).
12.
R.
Vitolo
,
H.
Broer
, and
C.
Simó
, “
Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems
,”
Reg. Chaotic Dyn.
16
,
154
184
(
2011
).
13.
M.
Komuro
,
K.
Kamiyama
,
T.
Endo
, and
K.
Aihara
, “
Quasi-periodic bifurcations of higher-dimensional tori
,”
Int. J. Bifurcat. Chaos
26
,
1630016
(
2016
).
14.
N.
Inaba
,
M.
Sekikawa
,
Y.
Shinotsuka
,
K.
Kamiyama
,
K.
Fujimoto
,
T.
Yoshinaga
, and
T.
Endo
, “
Bifurcation scenarios for a 3D torus and torus-doubling
,”
Prog. Theor. Exp. Phys.
2014
,
023A01
(
2014
).
15.
S.
Hidaka
,
N.
Inaba
,
K.
Kamiyama
,
M.
Sekikawa
, and
T.
Endo
, “
Bifurcation structure of an invariant three-torus and its computational sensitivity generated in a three-coupled delayed logistic map
,”
Nonlinear Theory Appl. IEICE
6
,
433
442
(
2015
).
16.
M.
Sekikawa
and
N.
Inaba
, “
Doubly twisted Neimark–Sacker bifurcation and two coexisting two-dimensional tori
,”
Phys. Lett. A
380
,
171
176
(
2016
).
17.
V.
Anishchenko
,
S.
Nikolaev
, and
J.
Kurths
, “
Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus
,”
Phys. Rev. E
76
,
046216
(
2007
).
18.
Y. P.
Emelianova
,
V. V.
Emelyanov
, and
N. M.
Ryskin
, “
Synchronization of two coupled multimode oscillators with time-delayed feedback
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
3778
3791
(
2014
).
19.
A.
Kuznetsov
,
S.
Kuznetsov
,
N.
Shchegoleva
, and
N.
Stankevich
, “
Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena
,”
Physica D
398
,
1
12
(
2019
).
20.
K.
Kaneko
, “
Doubling of torus
,”
Prog. Theor. Phys.
69
,
1806
1810
(
1983
).
21.
K.
Kaneko
, “
Oscillation and doubling of torus
,”
Prog. Theor. Phys.
72
,
202
215
(
1984
).
22.
N. V.
Stankevich
,
A.
Dvorak
,
V.
Astakhov
,
P.
Jaros
,
M.
Kapitaniak
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Chaos and hyperchaos in coupled antiphase driven toda oscillators
,”
Reg. Chaotic Dyn.
23
,
120
126
(
2018
).
23.
N.
Stankevich
,
A.
Kuznetsov
,
E.
Popova
, and
E.
Seleznev
, “
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
,”
Nonlinear Dyn.
97
,
2355
2370
(
2019
).
24.
I. R.
Garashchuk
,
D. I.
Sinelshchikov
,
A. O.
Kazakov
, and
N. A.
Kudryashov
, “
Hyperchaos and multistability in the model of two interacting microbubble contrast agents
,”
Chaos
29
,
063131
(
2019
).
25.
M.
Rosenblum
and
A.
Pikovsky
, “
Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. Lett.
98
,
064101
(
2007
).
26.
A.
Pikovsky
and
M.
Rosenblum
, “
Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
,”
Physica D
238
,
27
37
(
2009
).
27.
M.
Rosenblum
and
A.
Pikovsky
, “
Two types of quasiperiodic partial synchrony in oscillator ensembles
,”
Phys. Rev. E
92
,
012919
(
2015
).
28.
A. F.
Taylor
,
M. R.
Tinsley
,
F.
Wang
,
Z.
Huang
, and
K.
Showalter
, “
Dynamical quorum sensing and synchronization in large populations of chemical oscillators
,”
Science
323
,
614
617
(
2009
).
29.
S.
De Monte
,
F.
d’Ovidio
,
S.
Danø
, and
P. G.
Sørensen
, “
Dynamical quorum sensing: Population density encoded in cellular dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18377
18381
(
2007
).
30.
J.
Zamora-Munt
,
C.
Masoller
,
J.
Garcia-Ojalvo
, and
R.
Roy
, “
Crowd synchrony and quorum sensing in delay-coupled lasers
,”
Phys. Rev. Lett.
105
,
264101
(
2010
).
31.
B.-W.
Li
,
C.
Fu
,
H.
Zhang
, and
X.
Wang
, “
Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators
,”
Phys. Rev. E
86
,
046207
(
2012
).
32.
D.
McMillen
,
N.
Kopell
,
J.
Hasty
, and
J.
Collins
, “
Synchronizing genetic relaxation oscillators by intercell signaling
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
679
684
(
2002
).
33.
J.
Garcia-Ojalvo
,
M. B.
Elowitz
, and
S. H.
Strogatz
, “
Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
10955
10960
(
2004
).
34.
E.
Ullner
,
A.
Zaikin
,
E. I.
Volkov
, and
J.
García-Ojalvo
, “
Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication
,”
Phys. Rev. Lett.
99
,
148103
(
2007
).
35.
E.
Ullner
,
A.
Koseska
,
J.
Kurths
,
E.
Volkov
,
H.
Kantz
, and
J.
García-Ojalvo
, “
Multistability of synthetic genetic networks with repressive cell-to-cell communication
,”
Phys. Rev. E
78
,
031904
(
2008
).
36.
M. B.
Elowitz
and
S.
Leibler
, “
A synthetic oscillatory network of transcriptional regulators
,”
Nature
403
,
335
338
(
2000
).
37.
E. H.
Hellen
and
E.
Volkov
, “
How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability, and the loss of symmetry
,”
Commun. Nonlinear Sci. Numer. Simul.
62
,
462
479
(
2018
).
38.
I.
Potapov
,
B.
Zhurov
, and
E.
Volkov
, “
“Quorum sensing” generated multistability and chaos in a synthetic genetic oscillator
,”
Chaos
22
,
023117
(
2012
).
39.
E.
Sánchez
,
D.
Pazó
, and
M. A.
Matías
, “
Experimental study of the transitions between synchronous chaos and a periodic rotating wave
,”
Chaos
16
,
033122
(
2006
).
40.
P.
Perlikowski
,
S.
Yanchuk
,
M.
Wolfrum
,
A.
Stefanski
,
P.
Mosiolek
, and
T.
Kapitaniak
, “
Routes to complex dynamics in a ring of unidirectionally coupled systems
,”
Chaos
20
,
013111
(
2010
).
41.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
42.
H.
Broer
,
R.
Vitolo
, and
C.
Simó
, “Quasi-periodic hénon-like attractors in the lorenz-84 climate model with seasonal forcing,” in EQUADIFF 2003 (World Scientific, 2005), pp. 601–606.
43.
A.
Kuznetsov
,
M.
Kærn
, and
N.
Kopell
, “
Synchrony in a population of hysteresis-based genetic oscillators
,”
SIAM J. Appl. Math.
65
,
392
425
(
2004
).
You do not currently have access to this content.