Two-dimensional arrays of coupled waveguides or coupled microcavities allow us to confine and manipulate light. Based on a paradigmatic envelope equation, we show that these devices, subject to a coherent optical injection, support coexistence between a coherent and incoherent emission. In this regime, we show that two-dimensional chimera states can be generated. Depending on initial conditions, the system exhibits a family of two-dimensional chimera states and interaction between them. We characterize these two-dimensional structures by computing their Lyapunov spectrum and Yorke–Kaplan dimension. Finally, we show that two-dimensional chimera states are of spatiotemporal chaotic nature.

Supplementary Material

You do not currently have access to this content.