Global climate change affects marine species including phytoplankton, which constitute the base of the marine food web, by changing the primary productivity. Global warming affects the ocean surface temperature, in turn leading to a change in the oxygen production of phytoplankton. In this work, the fractional oxygen–phytoplankton–zooplankton mathematical model is considered by the Caputo fractional operator. The production rate of photosynthesis is determined by a temperature function. The model is, therefore, based on the idea that the rate of photosynthesis changes due to the impact of global warming, while phytoplankton oxygen production increases and decreases. We analyze the model with the Caputo fractional derivative differently from the classical case of the model and we compare the results with the integer order derivative when α tends to 1. Existence and uniqueness properties of the oxygen–plankton model have been proved by means of a local Lipschitz condition. It was shown that the species are more sustainable than its corresponding classical case in the Caputo model. Our results show that the effect of global warming on the oxygen production rate has been observed to be quite severe, resulting in oxygen depletion and plankton extinction.

1.
UN Climate Summit: Luis Alfonso de Alba Final Summary, UNFCCC, 23 September 2019, see http://go.nature.com/25KTrU.
2.
S.
Rahmstorf
, “
A semi-empirical approach to projecting future sea-level rise
,”
Science
315
(
5810
),
368
370
(
2007
).
3.
G. R.
Walther
,
E.
Post
,
P.
Convey
,
A.
Menzel
,
C.
Parmesan
,
T. J.
Beebee
,
J.-M.
Fromentin
,
O.
Hoegh-Guldberg
, and
F.
Bairlein
, “
Ecological responses to recent climate change
,”
Nature
416
(
6879
),
389
(
2002
).
4.
Japan Meteorological Agency. Sea surface temperature (Global), see https://www.data.jma.go.jp/gmd/kaiyou/english/long_term_sst_global/glb_warm_e.html (last accessed 15 September 2019).
5.
E. S.
Poloczanska
,
C. J.
Brown
,
W. J.
Sydeman
,
W.
Kiessling
,
D. S.
Schoeman
,
P. J.
Moore
,
K.
Brander
,
J. F.
Bruno
,
L. B.
Buckley
,
M.
Burrows
, and
C. M.
Duarte
, “
Global imprint of climate change on marine life
,”
Nat. Clim. Change
3
(
10
),
919
(
2013
).
6.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
John Wiley & Sons
,
2016
).
7.
P. M.
Cox
,
R. A.
Betts
,
C. D.
Jones
,
S. A.
Spall
, and
I. J.
Totterdell
, “
Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
,”
Nature
408
(
6809
),
184
(
2000
).
8.
M.
Bindi
and
J. E.
Olesen
, “
The responses of agriculture in Europe to climate change
,”
Reg. Environ. Change
11
(
1
),
151
158
(
2011
).
9.
W.
Thuiller
,
S.
Lavorel
,
M. B.
Araújo
,
M. T.
Sykes
, and
I. C.
Prentice
, “
Climate change threats to plant diversity in Europe
,”
Proc. Natl. Acad. Sci. U.S.A.
102
(
23
),
8245
8250
(
2005
).
10.
O.
Hoegh-Guldberg
,
D.
Jacob
,
M.
Taylor
,
M.
Bindi
,
S.
Brown
,
I.
Camilloni
,
A.
Diedhiou
,
R.
Djalante
,
K. L.
Ebi
,
F.
Engelbrecht
,
J.
Guiot
,
Y.
Hijioka
,
S.
Mehrotra
,
A.
Payne
,
S. I.
Seneviratne
,
A.
Thomas
,
R.
Warren
, and
G.
Zhou
,
“Impacts of 1.5°C global warming on natural and human systems,” Global warming of 1.5 °C.: An IPCC Special Report. IPCC Secretariat, 2018, pp. 175–311
.
12.
NASA satellite data capture a big climate effect on tiny Ocean life, see https://www.nasa.gov/centers/goddard/news/topstory/2005/plankton˙elnino.html.
13.
Y.
Sekerci
and
S.
Petrovskii
, “
Mathematical modelling of plankton–oxygen dynamics under the climate change
,”
Bull. Math. Biol.
77
(
12
),
2325
2353
(
2015
).
14.
M.
Bengfort
,
U.
Feudel
,
F. M.
Hilker
, and
H.
Malchow
, “
Plankton blooms and patchiness generated by heterogeneous physical environments
,”
Ecol. Complexity
20
,
185
194
(
2014
).
15.
N. D.
Lewis
,
A.
Morozov
,
M. N.
Breckels
,
M.
Steinke
, and
E. A.
Codling
, “
Multitrophic interactions in the sea: Assessing the effect of infochemical-mediated foraging in a 1-D spatial model
,”
Math. Model. Nat. Phenom.
8
(
6
),
25
44
(
2013
).
16.
H.
Malchow
,
S. V.
Petrovskii
, and
E.
Venturino
,
Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation
(
Chapman and Hall
,
2007
).
17.
S. V.
Petrovskii
and
H.
Malchow
in Mathematical Models of Marine Ecosystems, Mathematical Models Vol. III (Eolss, 2009), p. 27
18.
C.
Dai
,
M.
Zhao
, and
H.
Yu
, “
Dynamics induced by delay in a nutrient–phytoplankton model with diffusion
,”
Ecol. Complexity
26
,
29
36
(
2016
).
19.
T.
Zhang
and
W.
Wang
, “
Hopf bifurcation and bistability of a nutrient–phytoplankton–zooplankton model
,”
Appl. Math. Model.
36
(
12
),
6225
6235
(
2012
).
20.
A. K.
Misra
, “
Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes
,”
Nonlinear Anal. Model. Control
15
(
2
),
185
198
(
2010
).
21.
Y.
Sekerci
and
S.
Petrovskii
, “
Mathematical modelling of spatiotemporal dynamics of oxygen in a plankton system
,”
Math. Model. Nat. Phenom.
10
(
2
),
96
114
(
2015
).
22.
M.
Yavuz
and
E.
Bonyah
, “
New approaches to the fractional dynamics of schistosomiasis disease model
,”
Physica A
525
,
373
393
(
2019
).
23.
D.
Baleanu
,
A.
Jajarmi
, and
M.
Hajipour
, “
A new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel
,”
J. Optim. Theory Appl.
175
(
3
),
718
737
(
2017
).
24.
K.
Diethelm
, “
A fractional calculus based model for the simulation of an outbreak of dengue fever
,”
Nonlinear Dyn.
71
(
4
),
613
619
(
2013
).
25.
S.
Qureshi
and
A.
Atangana
, “
Mathematical analysis of dengue fever outbreak by novel fractional operators with field data
,”
Physica A
526
,
121127
(
2019
).
26.
S.
Qureshi
and
A.
Yusuf
, “
Modeling chickenpox disease with fractional derivatives: From Caputo to Atangana-Baleanu
,”
Chaos Solitons Fractals
122
,
111
118
(
2019
).
27.
S.
Ullah
,
M. A.
Khan
,
M.
Farooq
,
Z.
Hammouch
, and
D.
Baleanu
, “
A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
,”
Discr. Cont. Dyn. Syst. S
13
,
11
27
(
2019
).
28.
M.
Yavuz
and
N.
Özdemir
, “
European vanilla option pricing model of fractional order without singular kernel
,”
Fractal Fract.
2
(
1
),
3
(
2018
).
29.
M.
Yavuz
and
N.
Özdemir
, “
A different approach to the European option pricing model with new fractional operator
,”
Math. Model. Nat. Phenom.
13
(
1
),
12
(
2018
).
30.
D. G.
Prakasha
,
P.
Veeresha
, and
H. M.
Baskonus
, “
Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
,”
Eur. Phys. J. Plus
134
(
5
),
241
(
2019
).
31.
A.
Yusuf
,
S.
Qureshi
, and
S. F.
Shah
, “
Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators
,”
Chaos Solitons Fractals
132
,
109552
(
2020
).
32.
E.
Bas
,
B.
Acay
, and
R.
Ozarslan
, “
Fractional models with singular and non-singular kernels for energy efficient buildings
,”
Chaos
29
(
2
),
023110
(
2019
).
33.
E.
Bas
and
R.
Ozarslan
, “
Real world applications of fractional models by Atangana-Baleanu fractional derivative
,”
Chaos Solitons Fractals
116
,
121
125
(
2018
).
34.
R.
Ozarslan
,
A.
Ercan
, and
E.
Bas
, “
Novel fractional models compatible with real world problems
,”
Fractal Fract.
3
(
2
),
15
(
2019
).
35.
P.
Veeresha
,
D. G.
Prakasha
, and
H. M.
Baskonus
, “
An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas
,”
Pramana
93
(
5
),
75
(
2019
).
36.
H. M.
Baskonus
and
J. F.
Gómez-Aguilar
, “
New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative
,”
Mod. Phys. Lett. B
33
(
21
),
1950251
(
2019
).
37.
G.
Yel
and
H. M.
Baskonus
, “
Solitons in conformable time-fractional Wu–Zhang system arising in coastal design
,”
Pramana
93
(
4
),
57
(
2019
).
38.
P.
Veeresha
,
D. G.
Prakasha
, and
H. M.
Baskonus
, “
Novel simulations to the time-fractional Fisher’s equation
,”
Math. Sci.
13
(
1
),
33
42
(
2019
).
39.
P.
Veeresha
,
D. G.
Prakasha
, and
H. M.
Baskonus
, “
New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives
,”
Chaos
29
(
1
),
013119
(
2019
).
40.
F.
Jarad
,
T.
Abdeljawad
, and
Z.
Hammouch
, “
On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative
,”
Chaos Solitons Fractals
117
,
16
20
(
2018
).
41.
M. A.
Khan
,
O.
Kolebaje
,
A.
Yildirim
,
S.
Ullah
,
P.
Kumam
, and
P.
Thounthong
, “
Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel
,”
Eur. Phys. J. Plus
134
(
10
),
481
(
2019
).
42.
A.
Khalili Golmankhaneh
and
C.
Cattani
, “
Fractal logistic equation
,”
Fractal Fract.
3
(
3
),
41
(
2019
).
43.
A.
Yokuş
and
S.
Gülbahar
, “
Numerical solutions with linearization techniques of the fractional Harry Dym equation
,”
Appl. Math. Nonlinear Sci.
4
(
1
),
35
42
(
2019
).
44.
S.
Eze
and
M.
Oyesanya
, “
Fractional order climate change model in a Pacific Ocean
,”
J. Fract. Calculus Appl.
10
(
1
),
10
23
(
2019
).
45.
S. C.
Eze
and
M. O.
Oyesanya
, “
Fractional order on the impact of climate change with dominant earth’s fluctuations
,”
Math. Clim. Weather Forecast.
5
(
1
),
1
11
(
2019
).
46.
J. A.
Tenreiro Machado
and
A. M.
Lopes
, “
Dynamical analysis of the global warming
,”
Math. Prob. Eng.
2012
,
971641
(
2012
).
47.
M. S.
Asl
and
M.
Javidi
, “
Novel algorithms to estimate nonlinear FDEs: Applied to fractional order nutrient-phytoplankton-zooplankton system
,”
J. Comput. Appl. Math.
339
,
193
207
(
2018
).
48.
B.
Ghanbari
and
J. F.
Gómez-Aguilar
, “
Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives
,”
Chaos Solitons Fractals
116
,
114
120
(
2018
).
49.
M.
Javidi
and
B.
Ahmad
, “
Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system
,”
Ecol. Model.
318
,
8
18
(
2015
).
50.
M.
El-Shahed
,
A. M.
Ahmed
, and
I. M.
Abdelstar
, “
Fractional order model of phytoplankton-toxic phytoplankton-zooplankton system
,”
Adv. Anal.
3
,
37
51
(
2018
).
51.
I.
Podlubny
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Elsevier
,
1998
), Vol. 198.
52.
A. A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
(
Elsevier Science Limited
,
2006
), Vol. 204.
53.
D. P.
Kumarathunge
,
B. E.
Medlyn
,
J. E.
Drake
,
M. G.
Tjoelker
,
M. J.
Aspinwall
,
M.
Battaglia
,
F. J.
Cano
,
K. R.
Carter
,
M. A.
Cavaleri
,
L. A.
Cernusak
,
J. Q.
Chambers
,
K. Y.
Crous
,
M. G.
De Kauwe
,
D. N.
Dillaway
,
E.
Dreyer
,
D. S.
Ellsworth
,
O.
Ghannoum
,
Q.
Han
,
K.
Hikosaka
,
A. M.
Jensen
,
J. W. G.
Kelly
,
E. L.
Kruger
,
L. M.
Mercado
,
Y.
Onoda
,
P. B.
Reich
,
A.
Rogers
,
M.
Slot
,
N. G.
Smith
,
L.
Tarvainen
,
D. T.
Tissue
,
H. F.
Togashi
,
E. S.
Tribuzy
,
J.
Uddling
,
A.
Vårhammar
,
G.
Wallin
,
J. M.
Warren
, and
D. A.
Way
, “
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
,”
New Phytol.
222
(
2
),
768
784
(
2019
).
54.
K.
Hancke
and
R. N.
Glud
, “
Temperature effects on respiration and photosynthesis in three diatom-dominated
,”
Aquat. Microb. Ecol.
37
(
3
),
265
(
2004
).
55.
C.
Robinson
, “
Plankton gross production and respiration in the shallow water hydrothermal systems
,”
J. Plank. Res.
22
(
5
),
887
906
(
2000
).
56.
J.
Hansen
,
R.
Ruedy
,
M.
Sato
, and
K.
Lo
, “
Global surface temperature change
,”
Rev. Geophys.
48
,
RG4004
(
2010
).
57.
S.
Qureshi
and
A.
Yusuf
, “
Fractional derivatives applied to MSEIR problems: Comparative study with real world data
,”
Eur. Phys. J. Plus
134
(
4
),
171
(
2019
).
You do not currently have access to this content.