The research of finding hidden attractors in nonlinear dynamical systems has attracted much consideration because of its practical and theoretical importance. A new fractional order four-dimensional system, which can exhibit some hidden hyperchaotic attractors, is proposed in this paper. The predictor–corrector method of the Adams–Bashforth–Moulton algorithm and the parameter switching algorithm are used to numerically study this system. It is interesting that three different kinds of hidden hyperchaotic attractors with two positive Lyapunov exponents are found, and the fractional order system can have a line of equilibria, no equilibrium point, or only one stable equilibrium point. Moreover, a self-excited attractor is also recognized with the change of its parameters. Finally, the synchronization behavior is studied by using a linear feedback control method.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
2.
O. E.
Rössler
, “
An equation for hyperchaos
,”
Phys. Lett. A
71
(
2
),
155
157
(
1979
).
3.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Hidden attractor in smooth Chua systems
,”
Physica D
241
(
18
),
1482
1486
(
2012
).
4.
S.
Jafari
,
J. C.
Sprott
, and
F.
Nazarimehr
, “
Recent new examples of hidden attractors
,”
Eur. Phys. J. Spec. Top.
224
(
8
),
1469
1476
(
2015
).
5.
V. T.
Pham
,
S.
Vaidyanathan
,
C. K.
Volos
, and
S.
Jafari
, “
Hidden attractors in a chaotic system with an exponential nonlinear term
,”
Eur. Phys. J. Spec. Top.
224
(
8
),
1507
1517
(
2015
).
6.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
, “
Hidden attractors in dynamical systems
,”
Phys. Rep.
637
,
1
50
(
2016
).
7.
O. S.
Ojoniyi
and
A. N.
Njah
, “
A 5D hyperchaotic Sprott B system with coexisting hidden attractors
,”
Chaos Solitons Fractals
87
,
172
181
(
2016
).
8.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
San Diego
,
1999
).
9.
C.
Li
and
F.
Zeng
,
Numerical Methods for Fractional Calculus
(
CRC Press
,
Boca Raton, FL
,
2015
).
10.
J.
Cao
,
Y.
Qiu
, and
G.
Song
, “
A compact finite difference scheme for variable order subdiffusion equation
,”
Commun. Nonlinear Sci. Numer. Simul.
48
,
140
149
(
2017
).
11.
J.
Cao
,
G.
Song
,
J.
Wang
,
Q.
Shi
, and
S.
Sun
, “
Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source
,”
Appl. Math. Lett.
91
,
201
206
(
2019
).
12.
M.
Cai
and
C.
Li
, “
Regularity of the solution to Riesz-type fractional differential equation
,”
Integral Transforms Spec. Funct.
30
(
9
),
711
742
(
2019
).
13.
C.
Li
and
S.
Sarwar
, “
Existence and continuation of solutions for Caputo type fractional differential equations
,”
Electron. J. Differ. Equ.
2016
(
207
),
1
14
.
14.
I.
Petráš
,
Fractional-Order Nonlinear Systems
(
Springer
,
Berlin
,
2011
).
15.
C.
Li
and
G.
Peng
, “
Chaos in Chen’s system with a fractional order
,”
Chaos Solitons Fractals
22
(
2
),
443
450
(
2004
).
16.
C.
Zhang
and
S.
Yu
, “
Generation of multi-wing chaotic attractor in fractional order system
,”
Chaos Solitons Fractals
44
(
10
),
845
850
(
2011
).
17.
J.
He
and
F.
Chen
, “
A new fractional order hyperchaotic Rabinovich system and its dynamical behaviors
,”
Int. J. Nonlinear Mech.
95
,
73
81
(
2017
).
18.
A. M. A.
El-Sayed
,
H. M.
Nour
,
A.
Elsaid
,
A. E.
Matouk
, and
A.
Elsonbaty
, “
Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system
,”
Appl. Math. Modell.
40
(
5
),
3516
3534
(
2016
).
19.
M. F.
Danca
, “
Hidden chaotic attractors in fractional-order systems
,”
Nonlinear Dyn.
89
,
577
586
(
2017
).
20.
F.
Zhang
,
G.
Chen
,
C.
Li
, and
J.
Kurths
, “
Chaos synchronization in fractional differential systems
,”
Philos. Trans.
371
(
1990
),
20120155
(
2013
).
21.
C.
Li
,
K.
Su
, and
L.
Wu
, “
Adaptive sliding mode control for synchronization of a fractional-order chaotic system
,”
J. Comput. Nonlinear Dyn.
8
(
3
),
031005
(
2012
).
22.
D.
Cafagna
and
G.
Grassi
, “
Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
,”
Chin. Phys. B
24
(
8
),
224
232
(
2015
).
23.
J.
He
and
F.
Chen
, “
Dynamical analysis of a new fractional-order Rabinovich system and its fractional matrix projective synchronization
,”
Chin. J. Phys.
56
(
5
),
2627
2637
(
2018
).
24.
K.
Ding
,
C. K.
Volos
,
X.
Xu
, and
B.
Du
, “
Master-slave synchronization of 4D hyperchaotic Rabinovich systems
,”
Complexity
2018
,
6520474
.
25.
M.
Danca
,
N. V.
Kuznetsov
, and
G.
Chen
, “
Approximating hidden chaotic attractors via parameter switching
,”
Chaos
28
(
1
),
013127
(
2018
).
26.
X.
Wu
and
H.
Zhang
, “
Synchronization of two hyperchaotic systems via adaptive control
,”
Chaos Solitons Fractals
39
(
5
),
2268
2273
(
2009
).
27.
H.
Wang
,
Z.
Han
, and
Z.
Mo
, “
Synchronization of hyperchaotic systems via linear control
,”
Commun. Nonlinear Sci. Numer. Simul.
15
(
7
),
1910
1920
(
2010
).
28.
Y.
Li
,
Y.
Chen
, and
I.
Podlubny
, “
Technical communique: Mittag-Leffler stability of fractional order nonlinear dynamic systems
,”
Automatica
45
(
8
),
1965
1969
(
2009
).
29.
M. A.
Jafari
,
E.
Mliki
,
A.
Akgul
,
V.
Pham
,
S. T.
Kingni
,
X.
Wang
, and
S.
Jafari
, “
Chameleon: The most hidden chaotic flow
,”
Nonlinear Dyn.
88
(
3
),
2303
2317
(
2017
).
30.
S.
Mobayen
, “
Design of novel adaptive sliding mode controller for perturbed chameleon hidden chaotic flow
,”
Nonlinear Dyn.
92
(
4
),
1539
1553
(
2018
).
31.
Z.
Wang
,
J.
Liu
,
F.
Zhang
, and
S.
Leng
, “
Hidden chaotic attractors and synchronization for a new fractional-order chaotic system
,”
J. Comput. Nonlinear Dyn.
14
(
8
),
081010
(
2019
).
32.
D.
Kai
,
N. J.
Ford
, and
A. D.
Freed
, “
A predictor-corrector approach for the numerical solution of fractional differential equations
,”
Nonlinear Dyn.
29
(
1–4
),
3
22
(
2002
).
33.
R.
Garrappa
, “
On linear stability of predictor-corrector algorithms for fractional differential equations
,”
Int. J. Comput. Math.
87
(
10
),
2281
2290
(
2010
).
34.
R.
Garrappa
, “
Trapezoidal methods for fractional differential equations: Theoretical and computational aspects
,”
Math. Comput. Simul.
110
(
1
),
96
112
(
2013
).
35.
M. F.
Danca
and
N.
Kuznetsov
, “
Matlab code for Lyapunov exponents of fractional-order systems
,”
Int. J. Bifurcat. Chaos
28
(
05
),
1850067
(
2018
).
You do not currently have access to this content.