We show how to couple phase-oscillators on a graph so that collective dynamics “searches” for the coloring of that graph as it relaxes toward the dynamical equilibrium. This translates a combinatorial optimization problem (graph coloring) into a functional optimization problem (finding and evaluating the global minimum of dynamical non-equilibrium potential, done by the natural system’s evolution). Using a sample of graphs, we show that our method can serve as a viable alternative to the traditional combinatorial algorithms. Moreover, we show that, with the same computational cost, our method efficiently solves the harder problem of improper coloring of weighed graphs.
REFERENCES
1.
L. A.
Wolsey
and G. L.
Nemhauser
, Integer and Combinatorial Optimization
(John Wiley & Sons
, 2014
).2.
C. H.
Papadimitriou
and K.
Steiglitz
, Combinatorial Optimization: Algorithms and Complexity
(Courier Corporation
, 2013
).3.
A.
Schrijver
, Combinatorial Optimization: Polyhedra and Efficiency
(Springer Science & Business Media
, 2003
), Vol. 24.4.
M.
Baghel
, S.
Agrawal
, and S.
Silakari
, “Survey of metaheuristic algorithms for combinatorial optimization
,” Int. J. Comput. Appl.
58
, 19
(2012
). 5.
B.
Korte
and J.
Vygen
, Combinatorial Optimization: Theory and Algorithms
(Springer Science & Business Media
, 2007
).6.
G. J.
Woeginger
, “Exact algorithms for NP-hard problems: A survey,” in Combinatorial Optimization—Eureka, You Shrink!, edited by M. Jünger et al. (Springer, 2003), pp. 185–207.7.
S.
Salcedo-Sanz
, “Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures
,” Phys. Rep.
655
, 1
–70
(2016
). 8.
E.
Farhi
, J.
Goldstone
, S.
Gutmann
, J.
Lapan
, A.
Lundgren
, and D.
Preda
, “A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem
,” Science
292
, 472
–475
(2001
). 9.
T.
Albash
and D. A.
Lidar
, “Adiabatic quantum computation
,” Rev. Mod. Phys.
90
, 015002
(2018
). 10.
M. W.
Johnson
et al., “Quantum annealing with manufactured spins
,” Nature
473
, 194
–198
(2011
). 11.
R. D.
Somma
, S.
Boixo
, H.
Barnum
, and E.
Knill
, “Quantum simulations of classical annealing processes
,” Phys. Rev. Lett.
101
, 130504
(2008
). 12.
Z.
Wang
, S.
Hadfield
, Z.
Jiang
, and E. G.
Rieffel
, “Quantum approximate optimization algorithm for MaxCut: A fermionic view
,” Phys. Rev. A
97
, 022304
(2018
). 13.
F.
Gaitan
and L.
Clark
, “Ramsey numbers and adiabatic quantum computing
,” Phys. Rev. Lett.
108
, 010501
(2012
). 14.
F.
Gaitan
and L.
Clark
, “Graph isomorphism and adiabatic quantum computing
,” Phys. Rev. A
89
, 022342
(2014
). 15.
P. L.
McMahon
et al., “A fully programmable 100-spin coherent Ising machine with all-to-all connections
,” Science
354
, 614
–617
(2016
). 16.
K.
Kudo
, “Constrained quantum annealing of graph coloring
,” Phys. Rev. A
98
, 022301
(2018
). 17.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, 2003
), Vol. 12.18.
A.
Arenas
, A.
Díaz-Guilera
, J.
Kurths
, Y.
Moreno
, and C.
Zhou
, “Synchronization in complex networks
,” Phys. Rep.
469
, 93
–153
(2008
). 19.
M. A.
Porter
and J. P.
Gleeson
, “Dynamical systems on networks: A tutorial,” in Frontiers in Applied Dynamical Systems: Reviews and Tutorials (Springer, 2016), Vol. 4.20.
Z.
Levnajić
and A.
Pikovsky
, “Phase resetting of collective rhythm in ensembles of oscillators
,” Phys. Rev. E
82
, 056202
(2010
). 21.
L. da F.
Costa
et al., “Analyzing and modeling real-world phenomena with complex networks: A survey of applications
,” Adv. Phys.
60
, 329
–412
(2011
). 22.
V.
Jaćimović
and A.
Crnkić
, “Modelling mean fields in networks of coupled oscillators
,” J. Geom. Phys.
124
, 241
–248
(2018
). 23.
A.
Zakharova
, “Chimera patterns in networks: Interplay between dynamics, structure, noise, and delay,” in Understanding Complex Systems, edited by S. Kelso (Springer, 2020).24.
J. A.
Acebrón
, L. L.
Bonilla
, C. J. P.
Vicente
, F.
Ritort
, and R.
Spigler
, “The Kuramoto model: A simple paradigm for synchronization phenomena
,” Rev. Mod. Phys.
77
, 137
(2005
). 25.
F. A.
Rodrigues
, T. K. D.
Peron
, P.
Ji
, and J.
Kurths
, “The Kuramoto model in complex networks
,” Phys. Rep.
610
, 1
–98
(2016
). 26.
A.
Crnkić
and V.
Jaćimović
, “Exploring complex networks by detecting collective dynamics of Kuramoto oscillators,” in Proceedings of the OPTIMA-2017 Conference, edited by Yu. G. Evtushenko et al. (CEUR-WS, 2017), pp. 146–151.27.
C.
Zankoc
, D.
Fanelli
, F.
Ginelli
, and R.
Livi
, “Desynchronization and pattern formation in a noisy feed-forward oscillator network
,” Phys. Rev. E
99
, 012303
(2019
). 28.
B.
Pietras
, N.
Deschle
, and A.
Daffertshofer
, “First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions
,” Phys. Rev. E
98
, 062219
(2019
). 29.
Z.
Levnajić
, “Emergent multistability and frustration in phase-repulsive networks of oscillators
,” Phys. Rev. E
84
, 016231
(2011
). 30.
Z.
Levnajić
, “Evolutionary design of non-frustrated networks of phase-repulsive oscillators
,” Sci. Rep.
2
, 967
(2012
). 31.
D.
Goldstein
, M.
Giver
, and B.
Chakraborty
, “Synchronization patterns in geometrically frustrated rings of relaxation oscillators
,” Chaos
25
, 123109
(2015
). 32.
S.
Astakhov
, A.
Gulai
, N.
Fujiwara
, and J.
Kurths
, “The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators
,” Chaos
26
, 023102
(2016
). 33.
C. W.
Wu
, “Graph coloring via synchronization of coupled oscillators
,” IEEE Trans. Circuits Syst.
45
, 974
–978
(1998
). 34.
J.
Wu
, L.
Jiao
, R.
Li
, and W.
Chen
, “Clustering dynamics of nonlinear oscillator network: Application to graph coloring problem
,” Physica D
240
, 1972
–1978
(2011
). 35.
A. V.
Novikov
and E. N.
Benderskaya
, “Oscillatory neural networks based on the Kuramoto model for cluster analysis
,” Pattern Recognit. Image Anal.
24
, 365
–371
(2014
). 36.
A.
Parihar
, N.
Shukla
, M.
Jerry
, S.
Datta
, and A.
Raychowdhury
, “Vertex coloring of graphs via phase dynamics of coupled oscillatory networks
,” Sci. Rep.
7
, 911
(2017
). 37.
38.
39.
R.
Ganguli
and S.
Roy
, “A study on course timetable scheduling using graph coloring approach
,” Int. J. Comput. Appl. Math.
12
, 469
–485
(2017
).40.
K. I.
Aardal
et al., “Models and solution techniques for frequency assignment problems
,” Ann. Oper. Res.
153
, 79
–129
(2007
). 41.
N.
Gvozdenović
and M.
Laurent
, “The operator for the chromatic number of a graph
,” SIAM J. Optim.
19
, 572
–591
(2008
). 42.
J.
Govorčin
, N.
Gvozdenović
, and J.
Povh
, “New heuristics for the vertex coloring problem based on semidefinite programming
,” Cent. Eur. J. Oper. Res.
21
, 13
–25
(2013
). 43.
A.
Jabrayilov
and P.
Mutzel
, “New integer linear programming models for the vertex coloring problem,” in Latin American Symposium on Theoretical Informatics (Springer, 2018), pp. 640–652.44.
D. E.
Knuth
, “The sandwich theorem
,” Electron. J. Comb.
1
, A1
(1994
). 45.
D.
Eppstein
, “Small maximal independent sets and faster exact graph coloring
,” J. Graph Algorithms Appl.
7
, 131
–140
(2003
). 46.
E.
Malaguti
and P.
Toth
, “A survey on vertex coloring problems
,” Int. Trans. Oper. Res.
17
, 1
–34
(2010
). 47.
R.
Lewis
, A Guide to Graph Colouring: Algorithms and Applications
(Springer
, 2016
).48.
R. K.
Sundaram
, A First Course in Optimization Theory
(Cambridge University Press
, 1996
).49.
K. V.
Mardia
and P. E.
Jupp
, Directional Statistics
(John Wiley & Sons
, 1999
).50.
R.
Škrekovski
, “List improper colourings of planar graphs
,” Combin. Probab. Comput.
8
, 293
–299
(1999
). 51.
B.
Mohar
, “Circular colorings of edge-weighted graphs
,” J. Graph Theory
43
, 107
–116
(2003
). 52.
A.
Mishra
, S.
Banerjee
, and W.
Arbaugh
, “Weighted coloring based channel assignment for WLANs
,” Mob. Comput. Commun. Rev.
9
, 19
–31
(2005
). 53.
U.
Ascher
and L.
Petzold
, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
(SIAM
, 1989
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.