We study the statistics and short-time dynamics of the classical and the quantum Fermi–Pasta–Ulam chain in the thermal equilibrium. We analyze the distributions of single-particle configurations by integrating out the rest of the system. At low temperatures, we observe a systematic increase in the mobility of the chain when transitioning from classical to quantum mechanics due to zero-point energy effects. We analyze the consequences of quantum dispersion on the dynamics at short times of configurational correlation functions.

1.
E.
Fermi
,
J.
Pasta
, and
S.
Ulam
, “Studies of nonlinear problems I,” Los Alamos Report LA 1940, 1955, 1974.
2.
G.
Gallavotti
,
The Fermi-Pasta-Ulam Problem: A Status Report
(
Springer
,
Berlin
,
2008
).
3.
G. P.
Berman
and
F. M.
Izrailev
, “
The Fermi–Pasta–Ulam problem: Fifty years of progress
,”
Chaos
15
(
1
),
015104
(
2005
).
4.
R.
Bachelard
,
C.
Chandre
,
D.
Fanelli
,
X.
Leoncini
, and
S.
Ruffo
, “
Abundance of regular orbits and nonequilibrium phase transitions in the thermodynamic limit for long-range systems
,”
Phys. Rev. Lett.
101
,
260603
(
2008
).
5.
J.
Gaison
,
S.
Moskow
,
J. D.
Wright
, and
Q.
Zhang
, “
Approximation of polyatomic FPU lattices by KDV equations
,”
Multiscale Model. Simul.
12
,
953
995
(
2014
).
6.
A.
Carati
,
L.
Galgani
,
A.
Giorgilli
, and
S.
Paleari
, “
Fermi-Pasta-Ulam phenomenon for generic initial data
,”
Phys. Rev. E
76
,
022104
(
2007
).
7.
T. S. G.
Amati
and
H.
Meyer
, “
Memory effects in the Fermi–Pasta–Ulam model
,”
J. Stat. Phys.
174
,
219
257
(
2019
).
8.
A. L.
Burin
,
A. O.
Maksymov
,
M.
Schmidt
, and
I. Y.
Polishchuk
, “
Chaotic dynamics in a quantum Fermi–Pasta–Ulam problem
,”
Entropy
21
(
1
),
51
(
2019
).
9.
J. T.
Edwards
and
D. J.
Thoules
, “
Regularity of the density of states in Anderson’s localized electron model
,”
J. Phys. C Solid State Phys.
4
,
453
457
(
1971
).
10.
D. M.
Leitner
and
P. G.
Wolynes
, “
Quantization of the stochastic pump model of Arnold diffusion
,”
Phys. Rev. Lett.
79
,
55
58
(
1997
).
11.
Z.
Ivić
and
G.
Tsironis
, “
Biphonons in the β-Fermi–Pasta–Ulam model
,”
Phys. D Nonlinear Phenom.
216
(
1
),
200
206
(
2006
).
12.
A.
Kibey
,
R.
Sonone
,
B.
Dey
, and
J. C.
Eilbeck
, “
Quantization of β-Fermi–Pasta–Ulam lattice with nearest and next-nearest neighbor interactions
,”
Phys. D Nonlinear Phenom.
294
,
43
53
(
2015
).
13.
I.
Danshita
,
R.
Hipolito
,
V.
Oganesyan
, and
A.
Polkovnikov
, “
Quantum damping of Fermi–Pasta–Ulam revivals in ultracold Bose gases
,”
Prog. Theor. Exp. Phys.
2014
(
4
),
043I03
(
2014
).
14.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
15.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
, “
Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals
,”
J. Chem. Phys.
99
(
4
),
2796
2808
(
1993
).
16.
D.
Chandler
and
P. G.
Wolynes
, “
Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids
,”
J. Chem. Phys.
74
(
7
),
4078
4095
(
1981
).
17.
A.
Carati
and
A.
Ponno
, “
Chopping time of the FPU α-model
,”
J. Stat. Phys.
170
,
883
894
(
2018
).
18.
A.
Carati
,
A.
Maiocchi
,
L.
Galgani
, and
G.
Amati
, “
The Fermi–Pasta–Ulam system as a model for glasses
,”
Math. Phys. Anal. Geom.
18
,
31
(
2015
).
19.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
(
5
),
1117
1157
(
1996
).
20.
J.-P.
Hansen
and
I.
Ranald McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic Press
,
1986
).
21.
M.
de Gosson
, “Quantum harmonic analysis of the density matrix: Basics,” arXiv:1703.00889 (2017).
22.
J.-P.
Hansen
and
I. R.
McDonald
, “Distribution function theories,” in Theory of Simple Liquids, 4th ed., edited by J.-P. Hansen and I. R. McDonald (Academic Press, Oxford, 2013), Chap. 4, pp. 105–147.
23.
G.
Czakó
,
A. L.
Kaledin
, and
J. M.
Bowman
, “
A practical method to avoid zero-point leak in molecular dynamics calculations: Application to the water dimer
,”
J. Chem. Phys.
132
(
16
),
164103
(
2010
).
24.
G.
Czakó
,
A. L.
Kaledin
, and
J. M.
Bowman
, “
Zero-point energy constrained quasiclassical, classical, and exact quantum simulations of isomerizations and radial distribution functions of the water trimer using an ab initio potential energy surface
,”
Chem. Phys. Lett.
500
(
4
),
217
222
(
2010
).
25.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
(
8
),
3368
3373
(
2004
).
26.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
(
1
),
387
413
(
2013
).
27.
M.
Tuckerman
, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, 2010).
28.
R.
Welsch
,
K.
Song
,
Q.
Shi
,
S. C.
Althorpe
, and
T. F.
Miller
, “
Non-equilibrium dynamics from RPMD and CMD
,”
J. Chem. Phys.
145
(
20
),
204118
(
2016
).
29.
A.
Mellet
and
S.
Merino-Aceituno
, “
Anomalous energy transport in FPU-β chain.
,”
J. Stat. Phys.
160
,
583
621
(
2015
).
30.
C.
Danieli
,
D. K.
Campbell
, and
S.
Flach
, “
Intermittent many-body dynamics at equilibrium
,”
Phys. Rev. E
95
,
060202
(
2017
).
31.
J.
Wang
,
T.
Xing Liu
,
X.
Zhi Luo
,
X.-L.
Xu
, and
N.
Li
, “Anomalous energy diffusion in two-dimensional nonlinear lattices,” 2019.
32.
G.
Benettin
and
G.
Gradenigo
, “
A study of the Fermi–Pasta–Ulam problem in dimension two
,”
Chaos
18
(
1
),
013112
(
2008
).
33.
M.
Stoppato
, “The quantum Fermi Pasta Ulam problem,” 2016.
34.
P.
Zanardi
,
D. A.
Lidar
, and
S.
Lloyd
, “
Quantum tensor product structures are observable induced
,”
Phys. Rev. Lett.
92
,
060402
(
2004
).
35.
H.
Yoshida
, “
Non-integrability of the truncated toda lattice Hamiltonian at any order
,”
Commun. Math. Phys.
116
,
529
538
(
1988
).
36.
A.
Anderson
, “
Canonical transformations in quantum mechanics
,”
Ann. Phys.
232
(
2
),
292
331
(
1994
).
37.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
(
4
),
2635
2643
(
1992
).
38.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
, “
A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble
,”
J. Phys. A Math. Gen.
39
,
5629
5651
(
2006
).
39.
R. W.
Hall
and
B. J.
Berne
, “
Nonergodicity in path integral molecular dynamics
,”
J. Chem. Phys.
81
(
8
),
3641
3643
(
1984
).
40.
M. E.
Tuckerman
and
G. J.
Martyna
, “
Comment on ‘Simple reversible molecular dynamics algorithms for Nosé–Hoover chain dynamics’
,”
J. Chem. Phys.
110
(
7
),
3623
3625
(
1999
).
41.
H.
Yoshida
, “
Construction of higher order symplectic integrators
,”
Phys. Lett. A
150
(
5
),
262
268
(
1990
).
42.
M. E.
Tuckerman
,
C. J.
Mundy
, and
G. J.
Martyna
, “
On the classical statistical mechanics of non-Hamiltonian systems
,”
Europhys. Lett.
45
,
149
155
(
1999
).
43.
S. C.
Johnson
and
T. D.
Gutierrez
, “
Visualizing the phonon wave function
,”
Am. J. Phys.
70
(
3
),
227
237
(
2002
).
44.
S.
Lievens
,
N. I.
Stoilova
, and
J. V.
der Jeugt
, “
A linear chain of interacting harmonic oscillators: Solutions as a wigner quantum system
,”
J. Phys. Conf. Ser.
128
,
012028
(
2008
).
45.
L.
Picasso
, Lectures in Quantum Mechanics (Springer, 2016).
46.
Y.
He
and
F.
Yange
, “
Some recurrence formulas for the Hermite polynomials and their squares
,”
Open Math.
16
,
553
560
(
2018
).
You do not currently have access to this content.