We consider a class of multiplicative processes which, added with stochastic reset events, give origin to stationary distributions with power-law tails—ubiquitous in the statistics of social, economic, and ecological systems. Our main goal is to provide a series of exact results on the dynamics and asymptotic behavior of increasingly complex versions of a basic multiplicative process with resets, including discrete and continuous-time variants and several degrees of randomness in the parameters that control the process. In particular, we show how the power-law distributions are built up as time elapses, how their moments behave with time, and how their stationary profiles become quantitatively determined by those parameters. Our discussion emphasizes the connection with financial systems, but these stochastic processes are also expected to be fruitful in modeling a wide variety of social and biological phenomena.

1.
F.
Auerbach
, “Das Gesetz der Bevölkerungskonzentration,” in Petermanns Geographische Mitteilungen, edited by P. Langhans (Justus Perthes, Gotha, 1913), Vol. 59, pp. 74–76, see https://archive.org/details/Auerbach1913 (translation of first paragraph by S.M.).
2.
J. B.
Estoup
,
Gammes sténographiques
(
Institut Sténographique de France
,
Paris
,
1916
).
3.
G. U.
Yule
, “
A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis
,”
Proc. R. Soc. Lond. B
213
,
21
87
(
1924
).
4.
G. K.
Zipf
,
Human Behavior and the Principle of Least Effort
(
Addison-Wesley
,
Cambridge, MA
,
1949
).
5.
H. A.
Simon
, “
On a class of skew distribution functions
,”
Biometrika
42
,
425
440
(
1955
).
6.
N. N.
Taleb
,
The Black Swan: The Impact of the Highly Improbable
(
Random House
,
New York
,
2007
).
7.
S. C.
Manrubia
and
D. H.
Zanette
, “
Stochastic multiplicative processes with reset events
,”
Phys. Rev. E
59
,
4945
4948
(
1999
).
8.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with stochastic resetting
,”
Phys. Rev. Lett.
106
,
160601
(
2011
).
9.
M.
Montero
and
J.
Villarroel
, “
Monotonic continuous-time random walks with drift and stochastic reset events
,”
Phys. Rev. E
87
,
012116
(
2013
).
10.
V.
Pareto
,
Cours déconomie politique
(
Rouge
,
Lausanne
,
1896
).
11.
M. E. J.
Newman
, “
Power laws, Pareto distributions and Zipf’s law
,”
Contemp. Phys.
46
,
323
351
(
2004
).
12.
M.
Mitzenmacher
, “
A brief history of generative models for power law and lognormal distributions
,”
Internet Math.
1
,
226
251
(
2004
).
13.
D. H.
Zanette
and
S. C.
Manrubia
, “Multiplicative processes in social systems,” in
Complex Population Dynamics. Nonlinear Modeling in Ecology, Epidemiology and Genetics
, Lecture Notes in Complex Systems, edited by B. Blasius, J. Kurths, and L. Stone (World Scientific, Singapore, 2007), Vol. 7, pp. 129–158.
14.
E. W.
Montroll
and
M. F.
Shlesinger
, “
On 1/f noise and other distributions with long tails
,”
Proc. Natl. Acad. Sci. U.S.A.
79
,
3380
3383
(
1982
).
15.
D. H.
Zanette
, “
Multiplicative processes and city sizes
,” in
The Dynamics of Complex Urban Systems. An Interdisciplinary Approach
, edited by S. Albeverio, D. Andrey, P. Giordano, and A. Vancheri (Physica-Verlag, Heidelberg, 2008), pp. 457–472.
16.
D.
Fu
,
F.
Pammolli
,
S. V.
Buldyrev
,
M.
Riccaboni
,
K.
Matia
,
K.
Yamasaki
, and
H. E.
Stanley
, “
The growth of business firms: Theoretical framework and empirical evidence
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
18801
18806
(
2005
).
17.
D. H.
Zanette
and
S. C.
Manrubia
, “
Vertical transmission of culture and the distribution of family names
,”
Physica A
295
,
1
8
(
2001
).
18.
S. C.
Manrubia
and
D. H.
Zanette
, “
At the boundary between biological and cultural evolution: The origin of surname distributions
,”
J. Theor. Biol.
216
,
461
477
(
2002
).
19.
D. H.
Zanette
and
M.
Montemurro
, “
Dynamics of text generation with realistic Zipf’s distribution
,”
J. Quant. Ling.
12
,
29
40
(
2005
).
20.
D. H.
Zanette
, “
Zipf’s law and the creation of musical context
,”
Music. Sci.
10
,
3
18
(
2006
).
21.
H.
Takayasu
,
A.-H.
Sato
, and
M.
Takayasu
, “
Stable infinite variance fluctuations in randomly amplified Langevin systems
,”
Phys. Rev. Lett.
79
,
966
969
(
1997
).
22.
D.
Sornette
, “
Multiplicative processes and power laws
,”
Phys. Rev. E
57
,
4811
4813
(
1998
).
23.
D.
Sornette
, “
Linear stochastic dynamics with nonlinear fractal properties
,”
Physica A
250
,
295
314
(
1998
).
24.
M.
Levy
and
S.
Solomon
, “
Power laws are logarithmic Boltzmann laws
,”
Int. J. Mod. Phys. C
7
,
595
601
(
1996
).
25.
Y. B.
Zel’dovich
,
S. A.
Molchanov
,
A. A.
Ruzmaikin
, and
D. D.
Sokolov
, “
Intermittency in random media
,”
Sov. Phys. Usp.
30
,
353
369
(
1987
).
26.
D. H.
Zanette
and
S. C.
Manrubia
, “
Role of intermittency in urban development: A model of large-scale city formation
,”
Phys. Rev. Lett.
79
,
523
526
(
1997
).
27.
M.
Nirei
and
W.
Souma
, “Income distribution and stochastic multiplicative process with reset event,” in
The Complex Dynamics of Economic Interaction
, edited by M. Gallegati, A. P. Kirman, and M. Marsili (Springer, Berlin, 2004), pp. 161–168.
28.
M.
Montero
,
A.
Masó-Puigdellosas
, and
J.
Villarroel
, “
Continuous-time random walks with reset events
,”
Eur. Phys. J. B
90
,
176
(
2017
).
29.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
, see https://arxiv.org/abs/1910.07993 for “Stochastic resetting and applications” (2019).
30.
M.
Mézard
,
G.
Parisi
, and
M.
Virasoro
,
Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications
(
World Scientific
,
Singapore
,
1987
).
31.
B.
Derrida
, “
From random walks to spin glasses
,”
Physica D
107
,
186
198
(
1997
).
32.
B.
Derrida
and
B.
Jung-Muller
, “
The genealogical tree of a chromosome
,”
J. Stat. Phys.
94
,
277
298
(
1999
).
33.
J. M.
Meylahn
,
S.
Sabhapandit
, and
H.
Touchette
, “
Large deviations for Markov processes with resetting
,”
Phys. Rev. E
92
,
062148
(
2015
).
34.
X.
Gabaix
, “
Power laws in economics and finance
,”
Ann. Rev. Econ.
1
,
255
293
(
2009
).
35.
R.
Gibrat
,
Les inégalités économiques
(
Recueil Sirey
,
Paris
,
1931
).
36.
M.
Lagi
,
Y.
Bar-Yam
,
K. Z.
Bertrand
, and
Y.
Bar-Yam
, “The food crises: A quantitative model of food prices including speculators and ethanol conversion,” SSRN, 1932247 (2011). doi:10.2139/ssrn.1932247
37.
G.
Caprio
and
D.
Klingebiel
,
Bank Insolvencies: Cross-Country Experience
(
The World Bank
,
Washington, DC
,
1999
).
38.
N. N.
Taleb
, “
Black swans and the domains of statistics
,”
Am. Stat.
61
,
198
200
(
2007
).
39.
M.
Montero
and
J.
Villarroel
, “
Directed random walk with random restarts: The Sisyphus random walk
,”
Phys. Rev. E
94
,
032132
(
2016
).
40.
S.
Heubach
and
T.
Mansour
,
Combinatorics of Compositions and Words. Discrete Mathematics and Its Applications
(
CRC Press
,
Boca Raton, FL
,
2009
).
41.
S.
Redner
, “
Random multiplicative processes: An elementary tutorial
,”
Am. J. Phys.
58
,
267
273
(
1990
).
42.
N. N.
Taleb
, “
Finiteness of variance is irrelevant in the practice of quantitative finance
,”
Complexity
14
,
66
76
(
2009
).
43.
C.
Brooks
,
Introductory Econometrics for Finance
(
Cambridge University Press
,
Oxford
,
2019
).
44.
S. Y.
Novak
,
Extreme Value Methods with Applications to Finance
(
Chapman & Hall/CRC Press
,
London
,
2011
).
45.
N. N.
Taleb
,
Fooled by Randomness. The Hidden Role of Chance in Life and in the Markets
(
Random House
,
New York
,
2005
).
46.
Ł.
Kuśmierz
and
T.
Toyoizumi
, “
Robust random search with scale-free stochastic resetting
,”
Phys. Rev. E
100
,
032110
(
2019
).
47.
B. K.
Beare
and
A. A.
Toda
, see https://arxiv.org/abs/1712.01431v2 for “Geometrically stopped Markovian random growth processes and Pareto tails” (2019).
48.
V.
Buendía
,
M. A.
Muñoz
, and
S.
Manrubia
, “
Limited role of spatial self-structuring in emergent trade-offs during pathogen evolution
,”
Sci. Rep.
8
,
12476
(
2018
).
49.
F. R.
Adler
, “
Migration alone can produce persistence of host-parasitoid models
,”
Am. Nat.
141
,
642
650
(
1993
).
50.
K.
Yamamoto
and
Y.
Yamazaki
, “
Power-law behavior in a cascade process with stopping events: A solvable model
,”
Phys. Rev. E
85
,
011145
(
2012
).
You do not currently have access to this content.