Understanding spatiotemporal patterns of climate extremes has gained considerable relevance in the context of ongoing climate change. With enhanced computational capacity, data driven methods such as functional climate networks have been proposed and have already contributed to significant advances in understanding and predicting extreme events, as well as identifying interrelations between the occurrences of various climatic phenomena. While the (in its basic setting) parameter free event synchronization (ES) method has been widely applied to construct functional climate networks from extreme event series, its original definition has been realized to exhibit problems in handling events occurring at subsequent time steps, which need to be accounted for. Along with the study of this conceptual limitation of the original ES approach, event coincidence analysis (ECA) has been suggested as an alternative approach that incorporates an additional parameter for selecting certain time scales of event synchrony. In this work, we compare selected features of functional climate network representations of South American heavy precipitation events obtained using ES and ECA without and with the correction for temporal event clustering. We find that both measures exhibit different types of biases, which have profound impacts on the resulting network structures. By combining the complementary information captured by ES and ECA, we revisit the spatiotemporal organization of extreme events during the South American Monsoon season. While the corrected version of ES captures multiple time scales of heavy rainfall cascades at once, ECA allows disentangling those scales and thereby tracing the spatiotemporal propagation more explicitly.

1
F.
Hassanibesheli
and
R. V.
Donner
,
Chaos
29
,
083125
(
2019
).
2
A.
Odenweller
and
R. V.
Donner
, “Disentangling synchrony from serial dependency in paired event time series,” arXiv:1910.12343[physics.data-an] (2019).
4
R.
Albert
and
A.-L.
Barabási
,
Rev. Mod. Phys.
74
,
47
(
2002
).
5
M. E. J.
Newman
,
SIAM Rev.
45
,
167
(
2003
).
6
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
,
Phys. Rep.
424
,
175
(
2006
).
7
R. W.
Katz
and
B. G.
Brown
,
Clim. Change
21
,
289
(
1992
).
8
D. R.
Easterling
,
J. L.
Evans
,
P. Y.
Groisman
,
T. R.
Karl
,
K. E.
Kunkel
, and
P.
Ambenje
,
Bull. Am. Meteorol. Soc.
81
,
417
(
1999
).
9
C.
Rosenzweig
,
A.
Iglesias
,
X. B.
Yang
,
P. R.
Epstein
, and
E.
Chivian
,
Glob. Change Hum. Heal.
2
,
90
(
2001
).
10
R. Q.
Quiroga
,
T.
Kreuz
, and
P.
Grassberger
,
Phys. Rev. E
66
,
041904
(
2002
).
11
N.
Malik
,
N.
Marwan
, and
J.
Kurths
,
Nonlinear Process. Geophys.
17
,
371
(
2010
).
12
N.
Malik
,
B.
Bookhagen
,
N.
Marwan
, and
J.
Kurths
,
Clim. Dyn.
39
,
971
(
2012
).
13
N.
Boers
,
B.
Bookhagen
,
H. M. J.
Barbosa
,
N.
Marwan
,
J.
Kurths
, and
J. A.
Marengo
,
Nat. Commun.
5
,
5199
(
2014
).
14
V.
Stolbova
,
P.
Martin
,
B.
Bookhagen
,
N.
Marwan
, and
J.
Kurths
,
Nonlinear Process. Geophys.
21
,
901
(
2014
).
15
R. V.
Donner
,
M.
Wiedermann
, and
J. F.
Donges
, Nonlinear and Stochastic Climate Dynamics, 1st ed., edited by C. Franzke and T. O’Kane (Cambridge University Press, Cambridge, 2017), pp. 159–183.
16
N.
Boers
,
H. M. J.
Barbosa
,
B.
Bookhagen
,
J. A.
Marengo
,
N.
Marwan
, and
J.
Kurths
,
J. Clim.
28
,
7641
(
2015
).
17
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
,
Nature
566
,
373
(
2019
).
18
A.
Odenweller
, “Coupled complex network analysis of extreme precipitation in the Asian Monsoon region,” B.Sc. thesis (University of Cologne, 2017).
19
J. F.
Donges
,
R. V.
Donner
,
M. H.
Trauth
,
N.
Marwan
,
H.-J.
Schellnhuber
, and
J.
Kurths
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
20422
(
2011
).
20
J. F.
Donges
,
C. F.
Schleussner
,
J. F.
Siegmund
, and
R. V.
Donner
,
Eur. Phys. J. Spec. Top.
225
,
471
(
2016
).
21
N.
Boers
,
B.
Bookhagen
,
N.
Marwan
, and
J.
Kurths
,
Clim. Dyn.
46
,
601
(
2015
).
22
N.
Boers
,
B.
Bookhagen
,
N.
Marwan
,
J.
Kurths
, and
J. A.
Marengo
,
Geophys. Res. Lett.
40
,
4386
, https://doi.org/10.1002/grl.50681 (
2013
).
23
N.
Boers
,
A.
Rheinwalt
,
B.
Bookhagen
,
H. M. J.
Barbosa
,
N.
Marwan
,
J. A.
Marengo
, and
J.
Kurths
,
Geophys. Res. Lett.
41
,
7397
, https://doi.org/10.1002/2014GL061829 (
2014
).
24
N.
Boers
,
B.
Bookhagen
,
J. A.
Marengo
,
N.
Marwan
,
J.-S.
von Storch
, and
J.
Kurths
,
J. Clim.
28
,
1031
(
2015
).
25
J.
Heitzig
,
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
,
Eur. Phys. J. B
85
,
38
(
2012
).
26
J. F.
Donges
,
H. C.
Schultz
,
N.
Marwan
,
Y.
Zou
, and
J.
Kurths
,
Eur. Phys. J. B
84
,
635
(
2011
).
27
Goddard Earth Sciences Data and Information Services Center (GES DISC): TRMM (TMPA) Precipitation L3 1 day 0.25°× 0.25° V7, 35 (2016).
29
B.
Bookhagen
and
M. R.
Strecker
,
Geophys. Res. Lett.
35
,
1
, https://doi.org/10.1029/2007GL032011 (
2008
).
30
D. C.
Zemp
,
C.
Schleussner
,
H. M. J.
Barbosa
,
R. J.
van der Ent
,
J. F.
Donges
,
J.
Heinke
,
G.
Sampaio
, and
A.
Rammig
,
Atmos. Chem. Phys.
14
,
13337
(
2014
).
31
M.
Gelbrecht
,
N.
Boers
, and
J.
Kurths
,
Sci. Adv.
8
,
eaau3191
(
2018
).
32
J. A.
Marengo
and
W. R.
Soares
,
J. Clim.
17
,
2261
(
2004
).
33
B.
Liebmann
,
G. N.
Kiladis
,
C. S.
Vera
,
A. C.
Saulo
, and
L. M. V.
Carvalho
,
J. Clim.
17
,
3829
(
2004
).
34
P.
Salio
,
M.
Nicolini
, and
E. J.
Zipser
,
Mon. Weather Rev.
135
,
1290
(
2007
).
35
J. D.
Durkee
,
T. L.
Mote
, and
J. M.
Shepherd
,
J. Clim.
22
,
4590
(
2009
).
36
L. M. V.
Carvalho
,
C.
Jones
, and
B.
Liebmann
,
J. Clim.
15
,
2377
(
2002
).
37
C.
Vera
,
W.
Higgins
,
J.
Amador
,
T.
Ambrizzi
,
R.
Garreaud
,
D.
Gochis
,
D.
Gutzler
,
D.
Lettenmaier
,
J. A.
Marengo
,
C. R.
Mechoso
,
J.
Nogues-Paegle
,
P. L. S.
Dias
, and
C.
Zhang
,
J. Clim. Spec. Sect.
19
,
4977
(
2006
).
38
A.
Agarwal
,
N.
Marwan
,
M.
Rathinasamy
,
B.
Merz
, and
J.
Kurths
,
Nonlinear Process. Geophys.
24
,
599
(
2017
).
39
U.
Ozturk
,
N.
Malik
,
K.
Cheung
,
N.
Marwan
, and
J.
Kurths
,
Clim. Dyn.
53
,
521
(
2019
).
40
A.
Radebach
,
R. V.
Donner
,
J.
Runge
,
J. F.
Donges
, and
J.
Kurths
,
Phys. Rev. E
88
,
052807
(
2013
).
41
M.
Wiedermann
,
J. F.
Donges
,
J.
Kurths
, and
R. V.
Donner
,
Phys. Rev. E
96
,
042304
(
2017
).
You do not currently have access to this content.