We demonstrate the utility of machine learning in the separation of superimposed chaotic signals using a technique called reservoir computing. We assume no knowledge of the dynamical equations that produce the signals and require only training data consisting of finite-time samples of the component signals. We test our method on signals that are formed as linear combinations of signals from two Lorenz systems with different parameters. Comparing our nonlinear method with the optimal linear solution to the separation problem, the Wiener filter, we find that our method significantly outperforms the Wiener filter in all the scenarios we study. Furthermore, this difference is particularly striking when the component signals have similar frequency spectra. Indeed, our method works well when the component frequency spectra are indistinguishable—a case where a Wiener filter performs essentially no separation.

1.
J.
Basak
,
A.
Sudarshan
,
D.
Trivedi
, and
M. S.
Santhanam
, “
Weather data mining using independent component analysis
,”
J. Mach. Learn. Res.
5
(
Mar
),
239
253
(
2004
).
2.
M.
Congedo
,
C.
Gouy-Pailler
, and
C.
Jutten
, “
On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics
,”
Clin. Neurophysiol.
119
(
12
),
2677
2686
(
2008
).
3.
N.
Doukas
and
N. V.
Karadimas
, “
A blind source separation based cryptography scheme for mobile military communication applications
,”
WSEAS Trans. Commun.
7
(
12
),
1235
1245
(
2008
).
4.
A.
Buscarino
,
L.
Fortuna
, and
M.
Frasca
, “
Separation and synchronization of chaotic signals by optimization
,”
Phys. Rev. E
75
,
016215
(
2007
).
5.
L. S.
Tsimring
and
M. M.
Sushchik
, “
Multiplexing chaotic signals using synchronization
,”
Phys. Lett. A
213
(
3–4
),
155
166
(
1996
).
6.
T. L.
Carroll
and
L. M.
Pecora
, “
Using multiple attractor chaotic systems for communication
,”
Chaos
9
(
2
),
445
451
(
1999
).
7.
P.
Arena
,
A.
Buscarino
,
L.
Fortuna
, and
M.
Frasca
, “
Separation and synchronization of piecewise linear chaotic systems
,”
Phys. Rev. E
74
,
026212
(
2006
).
8.
Y.
Jianning
and
F.
Yi
, “Blind separation of mixing chaotic signals based on ICA using kurtosis,” in 2012 International Conference on Computer Science and Service System (IEEE, 2012), pp. 903–905.
9.
M.
Kuraya
,
A.
Uchida
,
S.
Yoshimori
, and
K.
Umeno
, “
Blind source separation of chaotic laser signals by independent component analysis
,”
Opt. Express
16
(
2
),
725
730
(
2008
).
10.
L.
Shan-Xiang
,
W.
Zhao-Shan
,
H.
Zhi-Hui
, and
F.
Jiu-Chao
, “
Gradient method for blind chaotic signal separation based on proliferation exponent
,”
Chin. Phys. B
23
(
1
),
010506
(
2013
).
11.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “Imagenet classification with deep convolutional neural networks,” in Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12) (Curran Associates, Inc., 2012), Vol. 1, pp. 1097–1105.
12.
S.
Leglaive
,
R.
Hennequin
, and
R.
Badeau
, “Singing voice detection with deep recurrent neural networks,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2015), pp. 121–125.
13.
J.
Kim
,
M.
El-Khamy
, and
J.
Lee
, “Residual LSTM: Design of a deep recurrent architecture for distant speech recognition,” arXiv:1701.03360 (2017).
14.
D.
Wang
and
J.
Chen
, “
Supervised speech separation based on deep learning: An overview
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
26
(
10
),
1702
1726
(
2018
).
15.
K.
Han
and
D.
Wang
, “
A classification based approach to speech segregation
,”
J. Acoust. Soc. Am.
132
(
5
),
3475
3483
(
2012
).
16.
M. N.
Schmidt
and
R. K.
Olsson
, “Single-channel speech separation using sparse non-negative matrix factorization,” in Ninth International Conference on Spoken Language Processing (ISCA, 2006).
17.
H.
Jaeger
, “The echo state approach to analysing and training recurrent neural networks-with an erratum note,” German National Research Center for Information Technology GMD Technical Report, Bonn, Germany, 2001, Vol. 148, p. 13.
18.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
(
11
),
2531
(
2002
).
19.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
(
3
),
127
149
(
2009
).
20.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
(
2
),
024102
(
2018
).
21.
J. B.
Butcher
,
D.
Verstraeten
,
B.
Schrauwen
,
C. R.
Day
, and
P. W.
Haycock
, “
Reservoir computing and extreme learning machines for non-linear time-series data analysis
,”
Neural Netw.
38
,
76
89
(
2013
).
22.
S.
Krishnagopal
,
Y.
Aloimonos
, and
M.
Girvan
, “
Similarity learning and generalization with limited data: A reservoir computing approach
,”
Complexity
2018
,
1
(
2018
).
23.
M. A.
Escalona-Morán
,
M. C.
Soriano
,
I.
Fischer
, and
C. R.
Mirasso
, “
Electrocardiogram classification using reservoir computing with logistic regression
,”
IEEE J. Biomed. Health Inform.
19
(
3
),
892
898
(
2014
).
24.
A. A.
Ferreira
,
T. B.
Ludermir
,
R. R. B.
de Aquino
,
M. M. S.
Lira
, and
O. N.
Neto
, “Investigating the use of reservoir computing for forecasting the hourly wind speed in short-term,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (IEEE, 2008), pp. 1649–1656.
25.
P. R.
Vlachas
,
W.
Byeon
,
Z. Y.
Wan
,
T. P.
Sapsis
, and
P.
Koumoutsakos
, “
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
,”
Proc. R. Soc. A
474
(
2213
),
20170844
(
2018
).
26.
M. C.
Ozturk
,
D.
Xu
, and
J. C.
Príncipe
, “
Analysis and design of echo state networks
,”
Neural Comput.
19
(
1
),
111
138
(
2007
).
27.
F.
Wyffels
,
B.
Schrauwen
, and
D.
Stroobandt
, “Stable output feedback in reservoir computing using ridge regression,” in Proceedings of the 18th International Conference on Artificial Neural Networks (ICANN’08) (Springer, 2008).
28.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
29.
W.
Tucker
, “
A rigorous ODE solver and Smale’s 14th problem
,”
Found. Comput. Math.
2
(
1
),
53
117
(
2002
).
30.
N.
Wiener
, “Extrapolation, interpolation, and smoothing of stationary time series,” Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Press of MIT and John Wiley & Sons, 1949).
31.
Z.
Lu
et al.,
Chaos
27
(
4
),
041102
(
2017
).
You do not currently have access to this content.