It is a challenging problem to assign communities in a complex network so that nodes in a community are tightly connected on the basis of higher-order connectivity patterns such as motifs. In this paper, we develop an efficient algorithm that detects communities based on higher-order structures. Our algorithm can also detect communities based on a signed motif, a colored motif, a weighted motif, as well as multiple motifs. We also introduce stochastic block models on the basis of higher-order structures. Then, we test our community detection algorithm on real-world networks and computer generated graphs drawn from the stochastic block models. The results of the tests indicate that our community detection algorithm is effective to identify communities on the basis of higher-order connectivity patterns.

1.
R.
Albert
and
A.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2001
).
2.
M.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
3.
S.
Fortunato
, “
Community detection in graphs
,”
Phys. Rep.
486
,
75
174
(
2010
).
4.
M.
Girvan
and
M.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
7826
(
2002
).
5.
P.
Holme
,
M.
Huss
, and
H.
Jeong
, “
Subnetwork hierarchies of biochemical pathways
,”
Bioinformatics
19
,
532
538
(
2003
).
6.
M.
Newman
and
M.
Girvan
, “
Finding and evaluating community structure in networks
,”
Phys. Rev. E
69
,
026113
(
2004
).
7.
F.
Radicchi
,
C.
Castellano
,
F.
Cecconi
,
V.
Loreto
, and
D.
Parisi
, “
Defining and identifying communities in networks
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
2658
2663
(
2004
).
8.
S.
Fortunato
,
V.
Latora
, and
M.
Marchiori
, “
Method to find community structures based on information centrality
,”
Phys. Rev. E
70
,
056104
(
2004
).
9.
J.
Chen
and
B.
Yuan
, “
Detecting functional modules in the yeast protein–protein interaction network
,”
Bioinformatics
22
,
2283
2290
(
2006
).
10.
M.
Newman
, “
Fast algorithm for detecting community structure in networks
,”
Phys. Rev. E
69
,
066133
(
2004
).
11.
A.
Clauset
,
M.
Newman
, and
C.
Moore
, “
Finding community structure in very large networks
,”
Phys. Rev. E
70
,
066111
(
2004
).
12.
R.
Guimera
,
M.
Sales-Pardo
, and
L.
Amaral
, “
Modularity from fluctuations in random graphs and complex networks
,”
Phys. Rev. E
70
,
025101(R)
(
2004
).
13.
W.
Scott
and
S.
Padhraic
, “A spectral clustering approach to finding communities in graphs,” in Proceedings of the 2005 SIAM International Conference on Data Mining, edited by K. Hillol, S. Jaideep, K. Chandrika, and G. Arnold (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005), pp. 274–285.
14.
M.
Newman
, “
Modularity and community structure in networks
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
8577
8582
(
2006
).
15.
V.
Blondel
,
J.
Guillaume
,
R.
Lambiotte
, and
E.
Lefebvre
, “
Fast unfolding of communities in large networks
,”
J. Stat. Mech. Theory Exp.
2008
,
P10008
.
16.
E.
Leicht
and
M.
Newman
, “
Community structure in directed networks
,”
Phys. Rev. Lett.
100
,
118703
(
2008
).
17.
M.
Newman
, “
Analysis of weighted networks
,”
Phys. Rev. E
70
,
056131
(
2004
).
18.
P.
Mucha
,
T.
Richardson
,
K.
Macon
,
M.
Porter
, and
J.
Onnela
, “
Community structure in time-dependent, multiscale, and multiplex networks
,”
Science
328
,
876
878
(
2010
).
19.
M.
Hastings
, “
Community detection as an inference problem
,”
Phys. Rev. E
74
,
035102(R)
(
2006
).
20.
M.
Newman
and
E.
Leicht
, “
Mixture models and exploratory analysis in networks
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
9564
9569
(
2007
).
21.
H.
Zanghi
,
C.
Ambroise
, and
V.
Miele
, “
Fast online graph clustering via Erdös-Rényi mixture
,”
Pattern Recognit.
41
,
3592
3599
(
2008
).
22.
B.
Karrer
and
M.
Newman
, “
Stochastic blockmodels and community structure in networks
,”
Phys. Rev. E
83
,
016107
(
2011
).
23.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
, “
Network motifs: Simple building blocks of complex networks
,”
Science
298
,
824
827
(
2002
).
24.
A.
Arenas
,
A.
Fernandez
,
S.
Fortunato
, and
S.
Gomez
, “
Motif-based communities in complex networks
,”
J. Phys. A
41
,
224001
(
2008
).
25.
A.
Benson
,
D.
Gleich
, and
J.
Leskovec
, “
Higher-order organization of complex networks
,”
Science
353
,
163
166
(
2016
).
26.
C.
Tsourakakis
,
J.
Pachocki
, and
M.
Mitzenmacher
, “Scalable motif-aware graph clustering,” arXiv:abs/1606.06235 (2016) also in Proceedings of the 26th International Conference on World Wide Web (International World Wide Web Conferences Steering Committee, Perth, 2017), pp. 1451–1460.
27.
P.
Li
and
O.
Milenkovic
, “Inhomogeneous hypergraph clustering with applications,” in Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates Inc., Long Beach, CA, 2017), pp. 2308–2318.
28.
C.
Manning
,
P.
Raghavan
, and
H.
Schütze
,
Introduction to Information Retrieval
(
Cambridge University Press
,
2008
).
29.
We revise the original definition of nested clusterings so that the clustering F is allowed to equal the clustering J.
30.
M.
Newman
, “
Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality
,”
Phys. Rev. E
64
,
016132
(
2001
).
31.
S.
Wernicke
, “
Efficient detection of network motifs
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
3
,
347
359
(
2006
).
32.
S.
Wernicke
and
F.
Rasche
, “
FANMOD: A tool for fast network motif detection
,”
Bioinformatics
22
,
1152
1153
(
2006
).
33.
D.
Wilkinson
and
B.
Huberman
, “
A method for finding communities of related genes
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
5241
5248
(
2004
).
34.
M.
Rattigan
,
M.
Maier
, and
D.
Jensen
, “Graph clustering with network structure indices,” in Proceedings of the 24th International Conference on Machine Learning, ICML ’07 (ACM, New York, NY, 2007), pp. 783–790.
35.
R.
Ulanowicz
,
C.
Bondavalli
, and
M.
Egnotovich
, “Network analysis of trophic dynamics in South Florida ecosystem, FY 97: The Florida Bay ecosystem,” Technical Report (Chesapeake Biological Laboratory, Solomons, MD, 1998).
36.
We only keep 62 nodes with known classification labels.
37.
Our data were obtained from http://www.weizmann.ac.il/mcb/UriAlon/e-coli-transcription-network. We use the network data in version 1.1.
38.
S.
Shen-Orr
,
R.
Milo
,
S.
Mangan
, and
U.
Alon
, “
Network motifs in the transcriptional regulation network of Escherichia coli
,”
Nat. Genet.
31
,
64
68
(
2002
).
39.
S.
Mangan
and
U.
Alon
, “
Structure and function of the feed-forward loop network motif
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
11980
11985
(
2003
).
40.
W.
Zachary
, “
An information flow model for conflict and fission in small groups
,”
J. Anthropol. Res.
33
,
452
473
(
1977
).
41.
G.
Palla
,
I.
Derényi
,
I.
Farkas
, and
T.
Vicsek
, “
Uncovering the overlapping community structure of complex networks in nature and society
,”
Nature
435
,
814
818
(
2005
).
42.
S.
Gregory
, “An algorithm to find overlapping community structure in networks,” in Knowledge Discovery in Databases: PKDD 2007 (Springer, Berlin, 2007), pp. 91–102.
43.
P.
Li
,
H.
Dau
,
G.
Puleo
, and
O.
Milenkovic
, “Motif clustering and overlapping clustering for social network analysis,” in IEEE INFOCOM 2017—IEEE Conference on Computer Communications (IEEE, 2017), pp. 1–9.
You do not currently have access to this content.