Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more complex than the dynamics of the means.

1
J. N.
Darroch
and
E.
Seneta
,
J. Appl. Prob.
2
,
88
(
1965
).
2
A.
Yaglom
,
Dokl. Akad. Nauk. SSSR
56
,
795
(
1947
).
3
D. L.
Isaacson
and
R. W.
Madsen
,
Markov Chains: Theory and Applications
(
Wiley
,
1976
).
4
E. A.
van Doorn
and
P. K.
Pollett
,
Eur. J. Oper. Res.
230
,
1
(
2013
).
5
A.
Bianchi
and
A.
Gaudillière
,
Stoch. Proc. Appl.
126
,
1622
(
2015
).
6
A.
Traulsen
,
J. C.
Claussen
, and
C.
Hauert
,
Phys. Rev. Lett.
95
,
238701
(
2005
).
7
A.
Traulsen
and
C.
Hauert
, “Stochastic evolutionary game dynamics,” in Reviews of Nonlinear Dynamics and Complexity, edited by H. G. Schuster (Wiley-VCH, Weinheim, 2009), Vol. 2, pp. 25–61.
8
J.
Hofbauer
and
K.
Sigmund
,
Evolutionary Games and Population Dynamics
(
Cambridge University Press
,
Cambridge
,
1998
).
9
D.
Zhou
,
B.
Wu
, and
H.
Ge
,
J. Theor. Biol.
264
,
874
(
2010
).
10
D.
Zhou
and
H.
Qian
,
Phys. Rev. E
84
,
031907
(
2011
).
11
T.
Herpich
,
J.
Thingna
, and
M.
Esposito
,
Phys. Rev. X
8
,
031056
(
2018
)
12
J.
Maynard Smith
,
Evolution and the Theory of Games
(
Cambridge University Press
,
Cambridge
,
1982
).
13
D.
Friedman
,
Quant. Finance
1
,
177
(
2001
).
14
J.
Knebel
,
M. F.
Weber
,
T.
Krüger
, and
E.
Frey
,
Nat. Commun.
6
,
6977
(
2015
).
15
C.
Gokhale
and
A.
Traulsen
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
5500
(
2010
).
16
P. A. P.
Moran
,
The Statistical Processes of Evolutionary Theory
(
Clarendon Press
,
Oxford
,
1962
).
17
M. A.
Nowak
,
A.
Sasaki
,
C.
Taylor
, and
D.
Fudenberg
,
Nature
428
,
646
(
2004
).
18
L.
Hindersin
,
B.
Wu
,
A.
Traulsen
, and
J.
García
,
Sci. Rep.
9
,
6946
(
2019
).
19
M. A.
Nowak
,
Evolutionary Dynamics: Exploring the Equations of Life
(
Harvard University Press
,
2006
).
20
A mutation is a change of the strategy outside the adaptation processes.
21
D. A.
Levin
and
Y.
Peres
,
Markov Chains and Mixing Times
(
AMS
,
2017
).
22
B.
Skyrms
,
J. Log. Lang. Inf.
1
,
11
(
1992
).
23
Y.
Sato
,
E.
Akiyama
, and
J. D.
Farmer
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
4748
(
2002
).
24
J. B. T.
Sanders
,
J. D.
Farmer
, and
T.
Galla
,
Sci. Rep.
8
,
4902
(
2018
).
25
A.
Traulsen
,
J. C.
Claussen
, and
C.
Hauert
,
Phys. Rev. E
74
,
011901
(
2006
).
26
For a population with N players and n possible strategies, the number of states is equal to the number of different ways to distribute N indistinguishable balls into n distinguishable boxes, that is, C(N+n1,n1). In the case of two antagonistic populations playing against each other, this number squares. In the simplest case n=2, with two populations of the size N=200 each, we have to deal with a Markov chain with 2002=40000 states.
27
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
New York, NY
,
2004
).
28
A.
Traulsen
,
J. C.
Claussen
, and
C.
Hauert
,
Phys. Rev. E
85
,
041901
(
2012
).
29
P.
Collet
,
S.
Martínez
, and
J. S.
Martín
,
Quasi-stationary Distributions
(
Springer
,
2013
).
30
L.
Arnold
,
Random Dynamical Systems
(
Springer
,
New York, NY
,
2003
).
31
P. H.
Baxendale
,
Probab. Theory Relat. Fields
99
,
581
(
1994
).
32
A.
Zakharova
,
T.
Vadivasova
,
V.
Anishchenko
,
A.
Koseska
, and
J.
Kurths
,
Phys. Rev. E
81
,
011106
(
2010
).
33
G.
Floquet
,
Ann. Ecole Norm. Sup.
12
,
47
(
1883
).
34
M.
Grifoni
and
P.
Hänggi
,
Phys. Rep.
304
,
229
(
1998
).
35
R.
Dawkins
,
The Selfish Gene
(
Oxford University Press
,
Oxford
,
1976
).
36
M.
Andersson
,
Sexual Selection
(
Princeton University Press
,
Princeton, NJ
,
1994
).
37
A.
Qvarnström
,
T.
Pärt
, and
B. C.
Sheldon
,
Nature
405
,
344
(
2000
).
38
R. N. C.
Milner
,
T.
Detto
,
M. D.
Jennions
, and
P. R. Y.
Backwell
,
Behav. Ecol.
21
,
311
(
2010
).
39
A. A.
Borg
,
E.
Forsgren
, and
T.
Amudsen
,
Anim. Behav.
72
,
763
(
2006
).
40
K. U.
Heubel
and
J.
Schlupp
,
Behav. Ecol.
19
,
1080
(
2008
).
41
42
M. M.
Holmes
,
C. L.
Bartrem
, and
J.
Wade
,
Physiol. Behav.
91
,
601
(
2007
).
43
These two consecutive steps, death and birth, can be reinterpreted as a single step of adaptation.19
44
J.
Hofbauer
and
K. H.
Schlag
,
J. Evol. Econ.
10
,
523
(
2000
).
45
We follow the convention that the stochastic matrix acts on the probability vector from the right.
46
E.
Seneta
,
Non-negative Matrices and Markov Chains
(
Springer
,
New York, NY
,
2006
).
47
In order to find the maximal-eigenvalue eigenvector of the reduced transition matrix, we use Python routine scipy.sparse.linalg.eigs, https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html.
48
H.
Risken
,
The Fokker-Planck Equation
(
Springer
,
1984
).
49
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
Berlin
,
1992
).
50
J.
von Neumann
and
O.
Morgenstern
,
Theory of Games and Economic Behaviour
(
Princeton University Press
,
Princeton, NJ
,
1944
).
51
L.
Arnold
,
S.
Namachchivaya
, and
K. R.
Schenk-Hoppé
,
J. Bifur. Chaos Appl. Sci. Engrg.
6
,
1947
(
1996
).
52
S.
Denisov
,
O.
Vershinina
, and
M.
Ivanchenko
, unpublished.
53
The extinction time for a specific initial state text(i,j) is defined as the average number of rounds before the absorption to the boundary. The average extinction time text is obtained by averaging text(i,j) over all initial states different from the boundary states.
54
We were not able to avoid the crossing for N=400 even with the integration step dt=105.
55
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
1992
).
56
A.
Szolnoki
et al.,
J. R. Soc. Interface
11
,
20140735
(
2014
).
57
G.
Szabo
and
I.
Borsos
,
Phys. Rep.
624
,
1
(
2016
).
58
U.
Dieckmann
,
P.
Marrow
, and
R.
Law
,
J. Theor. Biol.
176
,
91
(
1995
).
59
L. A.
Imhof
,
D.
Fudenberg
, and
M. A.
Nowak
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10797
(
2005
).
60
J.
Weitz
et al.,
Proc. Natl. Acad. Sci. U.S.A.
113
,
E7518
(
2016
).
61
A. J.
McKane
and
T. J.
Newman
,
Phys. Rev. Lett.
94
,
218102
(
2005
).
62
F.
Barraquand
et al.,
Ecol. Lett.
20
,
1074
(
2017
).
63
J. H.
Myers
,
Proc. R. Soc. B: Biol. Sci.
285
,
20172841
(
2018
).
64
C. A.
Klausmeier
,
Theor. Ecol.
1
,
153
(
2008
).
65
G. J.
Boender
,
A. A.
de Koeijer
, and
E. A. J.
Fischer
,
Acta Biotheor.
60
,
303
(
2012
).
66
S. S.
Golden
,
V. M.
Cassone
, and
A.
Li Wang
,
Nat. Struct. Mol. Biol.
14
,
362
(
2007
).
67
A.
Sancar
,
Nat. Struct. Mol. Biol.
15
,
23
(
2008
).
68
M. M.
Wolf
, see http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture for “Quantum Channels and Operations: Guided Tour.”
69
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
70
K.
Macieszczak
,
M.
Guţa
,
I.
Lesanovsky
, and
J. P.
Garrahan
,
Phys. Rev. Lett.
116
,
240404
(
2016
).
71
M.
Hartmann
,
D.
Poletti
,
M.
Ivanchenko
,
S.
Denisov
, and
P.
Hänggi
,
New J. Phys.
19
,
083011
(
2017
).
You do not currently have access to this content.