In this paper, the dynamics of the paradigmatic Rössler system is investigated in a yet unexplored region of its three-dimensional parameter space. We prove a necessary condition in this space for which the Rössler system can be chaotic. By using standard numerical tools, like bifurcation diagrams, Poincaré sections, and first-return maps, we highlight both asymptotically stable limit cycles and chaotic attractors. Lyapunov exponents are used to verify the chaotic behavior while random numerical procedures and various plane cross sections of the basins of attraction of the coexisting attractors prove that both limit cycles and chaotic attractors are hidden. We thus obtain previously unknown examples of bistability in the Rössler system, where a point attractor coexists with either a hidden limit cycle attractor or a hidden chaotic attractor.

1.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
2.
O. E.
Rössler
, “
Different types of chaos in two simple differential equations
,”
Z. Naturforsch. A
31
,
1664
1670
(
1976
).
3.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
4.
U.
Feudel
, “
Complex dynamics in multistable systems
,”
Int. J. Bifurcation Chaos
18
,
1607
1626
(
2007
).
5.
D. E.
Postnov
,
T. E.
Vadivasova
,
O. V.
Sosnovtseva
,
A. G.
Balanov
, and
V. S.
Anishchenko
, “
Role of multistability in the transition to chaotic phase synchronization
,”
Chaos
9
,
227
232
(
1999
).
6.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
, and
J. H.
García-López
, “
Synchronization of coupled bistable chaotic systems: Experimental study
,”
Philos. Trans. R. Soc. A
336
,
459
473
(
2007
).
7.
C. R.
Hens
,
R.
Banerjee
,
U.
Feudel
, and
S. K.
Dana
, “
How to obtain extreme multistability in coupled dynamical systems
,”
Phys. Rev. E
85
,
035202(R)
(
2012
).
8.
M. S.
Patel
,
U.
Patel
,
A.
Sen
,
G. C.
Sethia
,
C.
Hens
,
S. K.
Dana
,
U.
Feudel
,
K.
Showalter
,
C. N.
Ngonghala
, and
R. E.
Amritkar
, “
Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators
,”
Phys. Rev. E
89
,
022918
(
2014
).
9.
P.
Jaros
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Synchronization and multistability in the ring of modified Rössler oscillators
,”
Eur. Phys. J. Spec. Top.
224
,
1541
1552
(
2015
).
10.
R.
Barrio
,
F.
Blesa
, and
S.
Serrano
, “
Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors
,”
Physica D
238
,
1087
1100
(
2009
).
11.
C.
Li
,
W.
Hu
,
J. C.
Sprott
, and
X.
Wang
, “
Multistability in symmetric chaotic systems
,”
Eur. Phys. J. Spec. Top.
224
,
1493
1506
(
2015
).
12.
J. C.
Sprott
and
C.
Li
, “
Asymmetric bistability in the Rössler system
,”
Acta Phys. Pol. B
48
,
97
107
(
2017
).
13.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Localization of hidden Chua’s attractors
,”
Phys. Lett. A
375
,
2230
2233
(
2011
).
14.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Hidden attractor in smooth Chua systems
,”
Physica D
241
,
1482
1486
(
2012
).
15.
G. A.
Leonov
and
N. V.
Kuznetsov
, “
Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
,”
Int. J. Bifurcation Chaos
23
,
1330002
(
2013
).
16.
A. S.
Pikovski
,
M. I.
Rabinovich
, and
V. Y.
Trakhtengerts
, “
Onset of stochasticity in decay confinement of parametric instability
,”
J. Exp. Theor. Phys.
47
,
715
719
(
1978
), see http://www.stat.physik.uni-potsdam.de/∼pikovsky/pdffiles/1978/jetp.pdf.
17.
N. V.
Kuznetsov
,
G. A.
Leonov
,
T. N.
Mokaev
, and
S. M.
Seledzhi
, “
Hidden attractor in the Rabinovich system, Chua circuits and PLL
,”
AIP Conf. Proc.
1738
,
210008
(
2016
).
18.
A. B.
Glukhovskii
and
F. V.
Dolzhanskii
, “
Three-component geostrophic model of convection in a rotating fluid
,”
Acad. Sci. USSR Izv. Atmos. Ocean. Phys.
16
,
311
318
(
1980
), see https://ui.adsabs.harvard.edu/abs/1980FizAO..16..451G/abstract.
19.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
, “
Hidden attractors in dynamical systems
,”
Phys. Rep.
637
,
1
50
(
2016
).
20.
M. I.
Rabinovich
and
A. L.
Fabrikant
, “
Stochastic self-modulation of waves in nonequilibrium media
,”
J. Exp. Theor. Phys.
50
,
311
317
(
1979
), see http://jetp.ac.ru/cgi-bin/dn/e_050_02_0311.pdf.
21.
M.-F.
Danca
,
N. V.
Kuznetsov
, and
G.
Chen
, “
Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system
,”
Nonlinear Dyn.
88
,
791
805
(
2017
).
22.
Z.
Wei
, “
Dynamical behaviors of a chaotic system with no equilibria
,”
Phys. Lett. A
376
,
102
108
(
2011
).
23.
Z.
Wei
and
Q.
Yang
, “
Dynamical analysis of a new autonomous 3D chaotic system only with stable equilibria
,”
Nonlinear Anal. Real World Appl.
12
,
106
118
(
2011
).
24.
Z.
Wei
and
Q.
Yang
, “
Dynamical analysis of the generalized Sprott C system with only two stable equilibria
,”
Nonlinear Dyn.
68
,
543
554
(
2012
).
25.
X.
Wang
and
G.
Chen
, “
A chaotic system with only one stable equilibrium
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
1264
1272
(
2012
).
26.
X.
Wang
and
G.
Chen
, “
Constructing a chaotic system with any number of equilibria
,”
Nonlinear Dyn.
71
,
429
436
(
2013
).
27.
S.
Jafari
,
J.
Sprott
, and
S. M. R. H.
Golpayegani
, “
Elementary quadratic chaotic flows with no equilibria
,”
Phys. Lett. A
377
,
699
702
(
2013
).
28.
M.
Molaie
,
S.
Jafari
,
J. C.
Sprott
, and
S. M. R. H.
Golpayegani
, “
Simple chaotic flows with one stable equilibrium
,”
Int. J. Bifurcation Chaos
23
,
1350188
(
2013
).
29.
K.
Barati
,
S.
Jafari
,
J. C.
Sprott
, and
V.-T.
Pham
, “
Simple chaotic flows with a curve of equilibria
,”
Int. J. Bifurcation Chaos
26
,
1630034
(
2016
).
30.
T.
Gotthans
,
J. C.
Sprott
, and
J.
Petrzela
, “
Simple chaotic flow with circle and square equilibrium
,”
Int. J. Bifurcation Chaos
26
,
1650137
(
2016
).
31.
S.
Jafari
,
J. C.
Sprott
, and
M.
Molaie
, “
A simple chaotic flow with a plane of equilibria
,”
Int. J. Bifurcation Chaos
26
,
1650098
(
2016
).
32.
S.
Jafari
,
J. C.
Sprott
,
V.-T.
Pham
,
C.
Volos
, and
C.
Li
, “
Simple chaotic 3D flows with surfaces of equilibria
,”
Nonlinear Dyn.
86
,
1349
1358
(
2016
).
33.
B.
Munmuangsaen
and
B.
Srisuchinwong
, “
A hidden chaotic attractor in the classical Lorenz system
,”
Chaos Soliton. Fract.
107
,
61
66
(
2018
).
34.
J. C.
Sprott
and
B.
Munmuangsaen
, “
Comment on a hidden chaotic attractor in the classical Lorenz system
,”
Chaos Soliton. Fract.
113
,
261
262
(
2018
).
35.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
(
1
),
271
282
(
1995
).
36.
H.
Poincaré
, “
Sur les courbes définies par les équations différentielles (iii)
,”
J. Math. Pures Appl. 4E Sér.
1
,
167
244
(
1885
), see https://link.springer.com/article/10.1007/BF02403068.
37.
I.
Bendixson
, “
Sur les courbes définies par des équations différentielles
,”
Acta Math.
24
,
1
88
(
1901
).
38.
I.
Gardini
, “
Hopf bifurcations and period-doubling transitions in Rössler model
,”
Nuovo Cimento B
89
,
139
160
(
1985
).
39.
Y. A.
Kuznetsov
, “
Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE’s
,”
SIAM J. Numer. Anal.
36
,
1104
1124
(
1999
).
40.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer-Verlag
,
New York
,
2004
).
41.
M.
Hénon
, “
On the numerical computation of Poincaré maps
,”
Physica D
5
,
412
414
(
1982
).
42.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
43.
H.
Haken
, “
At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point
,”
Phys. Lett. A
94
,
71
72
(
1983
).
44.
N.
Metropolis
,
M.
Stein
, and
P.
Stein
, “
On finite limit sets for transformations on the unit interval
,”
J. Comb. Theory Ser. A
15
,
25
44
(
1973
).
45.
R. M.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
46.
E.
Ott
, “
Strange attractors and chaotic motions of dynamical systems
,”
Rev. Mod. Phys.
53
,
655
671
(
1981
).
47.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
1993
).
48.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett.
48
,
1507
1510
(
1982
).
49.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
50.
C.
Grebogi
,
E.
Ott
,
F.
Romeiras
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. A
36
,
5365
5380
(
1987
).
51.
P.
Frederickson
,
J. L.
Kaplan
,
E. D.
Yorke
, and
J. A.
Yorke
, “
The Lyapunov dimension of strange attractors
,”
J. Differ. Equ.
49
,
185
207
(
1983
).
You do not currently have access to this content.