In general, no transport can emerge in a spatially symmetric periodic system subjected to an unbiased dichotomous periodic driving. Here, we used a noise, which switches synchronously with the driving in three cases [switch between Gaussian white noise and colored noise, two colored noises with different colors (e.g., autocorrelation rate), and Gaussian white noise and harmonic velocity noise], to drive such a symmetric system. Numerical results for the cases indicate that the directed transport of the symmetric system can be induced merely by the color breaking (the difference in two autocorrelation rates) of the switch noise. The amplitude of current depends on the difference, i.e., the greater the difference, the greater the current. Also, the greater autocorrelation rate between the two noises determines the direction of current. The current as a function of the noise intensity for all cases has in common that appropriate noise intensity induces optimal transport. Further investigations show that the color breaking comes from the difference of barrier heights between the left and right-tilted potentials induced by the different autocorrelation rates.

1.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
,
Rev. Mod. Phys.
85
,
1143
(
2013
).
2.
G.
Mahmud
,
C. J.
Campbell
,
K. J. M.
Bishop
,
Y. A.
Komarova
et al.,
Nat. Phys.
5
,
606
(
2009
).
3.
G.
Lambert
,
D.
Liao
, and
R. H.
Austin
, “
Collective escape of chemotactic swimmers through microscopic ratchets
,”
Phys. Rev. Lett.
104
,
168102
(
2010
).
4.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
,
Rep. Prog. Phys.
78
,
056601
(
2015
).
5.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
7.
D.
Reguera
,
A.
Luque
,
P. S.
Burada
,
G.
Schmid
,
J. M.
Rubí
, and
P.
Hänggi
,
Phys. Rev. Lett.
108
,
020604
(
2012
).
8.
G. G.
Carlo
,
L.
Ermann
,
F.
Borondo
, and
R. M.
Benito
, “
Environmental stability of quantum chaotic ratchets
,”
Phys. Rev. E
83
,
011103
(
2011
).
9.
S.
Denisov
,
S.
Flach
, and
P.
Hänggi
,
Phys. Rep.
538
,
77
(
2014
).
10.
P. H.
Jones
,
M.
Goonasekera
,
D. R.
Meacher
,
T.
Jonckheere
, and
T. S.
Monteiro
,
Phys. Rev. Lett.
98
,
073002
(
2007
).
11.
T. S.
Monteiro
,
P. A.
Dando
,
N. A. C.
Hutchings
, and
M. R.
Isherwood
,
Phys. Rev. Lett.
89
,
194102
(
2002
).
12.
G. G.
Carlo
,
G.
Benenti
,
G.
Casati
,
S.
Wimberger
,
O.
Morsch
,
R.
Mannella
, and
E.
Arimondo
,
Phys. Rev. A
74
,
033617
(
2006
).
13.
M.
Sadgrove
,
M.
Horikoshi
,
T.
Sekimura
, and
K.
Nakagawa
,
Phys. Rev. Lett.
99
,
043002
(
2007
).
14.
E.
Lundh
and
M.
Wallin
,
Phys. Rev. Lett.
94
,
110603
(
2005
).
15.
D.
Poletti
,
G. G.
Carlo
, and
B.
Li
,
Phys. Rev. E
75
,
011102
(
2007
).
16.
A.
Kenfack
,
J.
Gong
, and
A. K.
Pattanayak
,
Phys. Rev. Lett.
100
,
044104
(
2008
).
17.
J.
Wang
and
J.
Gong
,
Phys. Rev. E
78
,
036219
(
2008
).
18.
20.
A.
Dechant
and
S.-I.
Sasa
,
Phys. Rev. E
97
,
062101
(
2018
).
21.
P.
Jung
,
J. G.
Kissner
, and
P.
Hänggi
,
Phys. Rev. Lett.
76
,
3436
(
1996
).
22.
R.
Bartussek
,
P.
Hänggi
, and
J. G.
Kissner
,
Europhys. Lett.
28
,
459
(
1994
).
23.
J.
Prost
,
J. F.
Chauwin
,
L.
Peliti
, and
A.
Ajdari
,
Phys. Rev. Lett.
72
,
2652
(
1994
).
24.
A.
Ajdari
and
J.
Prost
,
Europhys. Lett.
32
,
373
(
1995
).
25.
P.
Reimann
,
R.
Bartussek
,
R.
Häussler
, and
P.
Hänggi
,
Phys. Lett. A
215
,
26
(
1996
).
26.
C. R.
Doering
,
W.
Horsthemke
, and
J.
Riordan
,
Phys. Rev. Lett.
72
,
2984
(
1994
).
27.
X. X.
Sun
,
L. R.
Nie
, and
P.
Li
,
Europhys. Lett.
95
,
50003
(
2011
).
28.
R. Y.
Chen
,
L. R.
Nie
, and
C. Y.
Chen
,
Chaos
28
,
053115
(
2018
).
29.
R. Y.
Chen
,
W. L.
Pan
,
J. Q.
Zhang
, and
L. R.
Nie
,
Chaos
26
,
093113
(
2016
).
30.
R. Y.
Chen
,
L. R.
Nie
,
C. Y.
Chen
, and
C. J.
Wang
,
J. Stat. Mech.
2017
,
013201
.
31.
R. Y.
Chen
,
G. W.
Zhang
,
C. J.
Wang
,
L. R.
Nie
, and
C. Y.
Chen
,
Chaos Solitons Fractals
98
,
205
209
(
2017
).
32.
D. J.
Wu
,
L.
Cao
, and
S. Z.
Ke
,
Phys. Rev. E
50
,
2496
(
1994
).
33.
B.
Lindner
,
L.
Schimansky-Geier
,
P.
Reimann
,
P.
Hänggi
, and
M.
Nagaoka
,
Phys. Rev. E
59
,
1417
(
1999
).
34.
Y.
Xu
,
J.
Wu
,
H. Q.
Zhang
, and
S. J.
Ma
,
Nonlinear Dynam.
70
,
531
539
(
2012
).
35.
36.
D.
Nozaki
,
D. J.
Mar
,
P.
Grigg
, and
J. J.
Collins
,
Phys. Rev. Lett.
82
,
2402
(
1999
).
37.
M.
Kostur
,
J.
Luczka
, and
P.
Hänggi
,
Phys. Rev. E
80
,
051121
(
2009
).
38.
S.
Kim
,
S. H.
Park
, and
C. S.
Ryu
,
Phys. Rev. E
58
,
7994
(
1998
).
39.
P.
Jung
and
P.
Hänggi
,
Phys. Rev. A
35
,
4464
(
1987
).
40.
R. Y.
Chen
,
L. L.
Pan
,
L. R.
Nie
,
C. Y.
Chen
,
C. H.
Zeng
, and
S. F.
Liu
,
Indian J. Phys.
93
,
115
121
(
2019
).
41.
J. M.
Sancho
,
M.
SanMiguel
,
S. L.
Katz
, and
J. D.
Gunton
,
Phys. Rev. A
26
,
1589
(
1982
).
42.
D. E.
Knuth
,
The Art of Computer Programming
(
Addison-Wesley
,
Reading, MA
,
1969
), Vol. 2.
You do not currently have access to this content.