Characterizing the multiscale nature of fluctuations from nonlinear and nonstationary time series is one of the most intensively studied contemporary problems in nonlinear sciences. In this work, we address this problem by combining two established concepts—empirical mode decomposition (EMD) and generalized fractal dimensions—into a unified analysis framework. Specifically, we demonstrate that the intrinsic mode functions derived by EMD can be used as a source of local (in terms of scales) information about the properties of the phase-space trajectory of the system under study, allowing us to derive multiscale measures when looking at the behavior of the generalized fractal dimensions at different scales. This formalism is applied to three well-known low-dimensional deterministic dynamical systems (the Hénon map, the Lorenz ’63 system, and the standard map), three realizations of fractional Brownian motion with different Hurst exponents, and two somewhat higher-dimensional deterministic dynamical systems (the Lorenz ’96 model and the on–off intermittency model). These examples allow us to assess the performance of our formalism with respect to practically relevant aspects like additive noise, different initial conditions, the length of the time series under study, low- vs high-dimensional dynamics, and bursting effects. Finally, by taking advantage of two real-world systems whose multiscale features have been widely investigated (a marine stack record providing a proxy of the global ice volume variability of the past 5×106 years and the SYM-H geomagnetic index), we also illustrate the applicability of this formalism to real-world time series.

1
S.
Lovejoy
and
D.
Schertzer
,
The Weather and Climate: Emergent Laws and Multifractal Cascades
(
Cambridge University Press
,
Cambridge
,
2013
), p.
475
.
2
Z.-G.
Shao
and
P. D.
Ditlevsen
,
Nat. Commun.
7
,
10951
(
2016
).
3
U.
Frisch
,
Turbulence. The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
Cambridge
,
1995
), p.
296
.
4
R.
Bruno
and
V.
Carbone
,
Turbulence in the Solar Wind
(
Springer
,
Heidelberg
,
2016
), p.
267
.
5
G.
Consolini
,
T.
Alberti
, and
P.
De Michelis
,
J. Geophys. Res.
123
,
9065
, https://doi.org/10.1029/2018JA025952 (
2018
).
6
P.
Grassberger
,
T.
Schreiber
, and
C.
Schaffrath
,
Int. J. Bifurc. Chaos
01
,
521
547
(
1991
).
7
S. M.
Pincus
,
Proc. Natl. Acad. Sci. U.S.A.
88
,
2297
2301
(
1991
).
8
M.
Costa
,
A. L.
Goldberger
, and
C.-K.
Peng
,
Phys. Rev. Lett.
89
,
062102
(
2002
).
9
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
Freeman
,
San Francisco
,
1982
), p.
468
.
10
R. V.
Donner
,
J.
Heitzig
,
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
,
Eur. Phys. J. B
84
,
653
627
(
2011
).
11
H. G. E.
Hentschel
and
I.
Procaccia
,
Physica D
8
,
435
(
1983
).
12
P.
Grassberger
and
I.
Procaccia
,
Phys. Rev. Lett.
50
,
346
(
1983
).
13
T. C.
Halsey
,
M. H.
Jensen
,
L. P.
Kadanoff
, and
I.
Procaccia
,
Phys. Rev. A
33
,
1141
(
1986
).
14
G.
Parisi
and
U.
Frisch
, in Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (North-Holland, Amsterdam, 1985), p. 84.
15
D.
Harte
,
Multifractals. Theory and Applications
(
Chapman & Hall
,
London
,
2001
), p.
264
.
16
F.
Anselmet
,
Y.
Gagne
,
E. J.
Hopfinger
, and
R. A.
Antonia
,
J. Fluid Mech.
140
,
63
(
1984
).
17
B.
Castaing
,
Y.
Gagne
, and
E. J.
Hopfinger
,
Physica D
46
,
177
(
1990
).
18
E.
Marsch
and
S.
Liu
,
Ann. Geophys.
11
,
227
(
1993
).
19
L.
Sorriso-Valvo
,
V.
Carbone
,
P.
Veltri
,
G.
Consolini
, and
R.
Bruno
,
Geophys. Res. Lett.
26
,
1801
, https://doi.org/10.1029/1999GL900270 (
1999
).
20
V.
Carbone
,
R.
Marino
,
L.
Sorriso-Valvo
,
A.
Noullez
, and
R.
Bruno
,
Phys. Rev. Lett.
103
,
061102
(
2009
).
21
T.
Alberti
,
G.
Consolini
,
V.
Carbone
,
E.
Yordanova
,
M. F.
Marcucci
, and
P.
De Michelis
,
Entropy
21
,
320
(
2019
).
22
C.
Meneveau
and
K. R.
Sreenivasan
,
Phys. Lett. A
137
,
103
(
1989
).
23
D. V.
Vassiliadis
,
A. S.
Sharma
,
T. E.
Eastman
, and
K.
Papadopoulos
,
Geophys. Res. Lett.
17
,
1841
, https://doi.org/10.1029/GL017i011p01841 (
1990
).
24
G.
Consolini
,
M. F.
Marcucci
, and
M.
Candidi
,
Phys. Rev. Lett.
76
,
4082
(
1996
).
25
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
).
27
28
M.
Palus
,
A.
Krakovská
,
J.
Jakubík
, and
M.
Chvosteková
,
Chaos
28
,
075307
(
2018
).
29
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
2004
), p.
388
.
30
H. A.
Dijkstra
,
Nonlinear Climate Dynamics
(
Cambridge University Press
,
Cambridge
,
2013
).
32
G.
Gallavotti
,
Statistical Mechanics. A Short Treatise
(
Springer-Verlag
,
Berlin
,
2000
), p.
354
.
34
P.
Langevin
,
C.R. Acad. Sci. Paris
146
,
530
(
1908
).
35
L. F.
Richardson
,
Weather Prediction by Numerical Process
(
Cambridge University Press
,
Cambridge
,
2007
), p.
250
.
36
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
), p.
771
.
37
A. N.
Kolmogorov
,
Dokl. Akad. Nauk SSSR
30
,
301
(
1941
).
38
N. E.
Huang
et al.,
Proc. R. Soc. London Ser. A
454
,
903
(
1998
).
39
L. E.
Lisiecki
and
M. E.
Raymo
,
Paleoceanography
20
,
437
(
2005
).
40
T.
Iyemori
,
J. Geomagn. Geoelectr.
42
,
1249
(
1990
).
41
P.
Flandrin
,
G.
Rilling
, and
P.
Goncalves
,
IEEE Signal Process. Lett.
11
,
2
(
2004
).
42
G.
Rilling
,
P.
Flandrin
, and
P.
Goncalves
, in Proceedings of the IEEE-EURASIP, Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy (IEEE, 2003).
43
T.
Alberti
,
Il Nuovo Cimento
41C
,
113
(
2018
).
44
G.
Consolini
et al.,
J. Phys. Conf. Ser.
900
,
012003
(
2017
).
45
J. G.
Reid
and
T. A.
Trainor
, “Correlation analysis with scale-local entropy measures,” arXiv:math-ph/0304010 (2003a).
46
J. G.
Reid
and
T. A.
Trainor
, “Scale-local dimensions of strange attractors,” arXiv:math-ph/0305022 (2003b).
47
P.
Grassberger
,
Phys. Lett. A
107
,
101
(
1985
).
48
M.
Henon
,
Comm. Math. Phys.
50
,
69
(
1976
).
49
R. A.
da Costa
and
M.
Eisencraft
, in
Proceedings of the 8th International Conference on Nonlinear Science and Complexity
(
SWGE Sistemas
,
2016
), Vol.
42
.
50
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, edited by D. A. Rand and L.-S. Young (Springer-Verlag, 1981), Vol. 898, pp. 366–381.
51
Z.
Ming-Wei
,
F.
Guo-Lin
, and
G.
Xin-Quan
,
Chin. Phys.
15
,
1384
(
2006
).
52
J.
Argyris
,
I.
Andreadis
,
G.
Pavlos
, and
M.
Athanasiou
,
Chaos Soliton. Fract.
9
,
343
(
1998
).
53
Z.
Wu
and
N. E.
Huang
,
Proc. R. Soc. London A
460
,
1597
(
2004
).
54
D.
Farmer
,
J.
Crutchfield
,
H.
Froehling
,
N.
Packard
, and
R.
Shaw
,
Ann. New York Acad. Sci.
357
,
453
(
1980
).
55
E.-H.
Park
,
M.-A.
Zaks
, and
J.
Kurths
,
Phys. Rev. E
60
,
6627
(
1999
).
56
V.
Lucarini
,
J. Stat. Phys.
134
,
381
(
2009
).
57
P.
Cvitanovic
,
M. H.
Jensen
,
L. P.
Kadanoff
, and
I.
Procaccia
,
Phys. Rev. Lett.
55
,
343
(
1985
).
58
G.
Voyatzis
, “
Low frequency power spectra and classification of Hamiltonian trajectories
,” in
Galaxies and Chaos
,
Lecture Notes in Physics
(
Springer
,
2003
), Vol
626
, pp.
126
136
.
59
Y.
Zou
,
R. V.
Donner
,
M.
Thiel
, and
J.
Kurths
,
Chaos
26
,
023120
(
2016
).
60
M.
Harsoula
,
K.
Karamanos
, and
G.
Contopoulos
,
Phys. Rev. E
99
,
032203
(
2019
).
61
E. N.
Lorenz
,
Proc. Seminar Predict.
1
,
1
(
1996
).
62
E. N.
Lorenz
and
K. A.
Emanuel
,
J. Atmos. Sci.
655
,
399
(
1998
).
63
A.
Karimi
and
M. L.
Paul
,
Chaos
20
,
043105
(
2010
).
64
J. L.
Kaplan
and
J. A.
Yorke
, “
Chaotic behavior of multidimensional difference equations
,” in
Functional Differential Equations and Approximation of Fixed Points
, Lecture Notes in Mathematics, edited by H. O. Peitgen and H. O. Walther (Springer, Berlin), Vol. 730.
65
N.
Platt
,
E. A.
Spiegel
, and
C.
Tresser
,
Phys. Rev. Lett.
70
,
279
(
1993
).
66
P. D.
Ditlevsen
and
P.
Ashwin
,
Front. Phys.
6
,
62
(
2018
).
67
M.
Crucifix
,
Philos. Trans. R. Soc. A
370
,
1140
(
2012
).
68
I.
Daruka
and
P. D.
Ditlevsen
,
Clim. Dyn.
46
,
29
(
2016
).
69
J.
Lekscha
and
R. V.
Donner
,
Chaos
28
,
085702
(
2018
).
70
T.
Alberti
,
G.
Consolini
,
P.
De Michelis
,
M.
Laurenza
, and
M. F.
Marcucci
,
J. Space Weather Space Clim.
8
,
A56
(
2018
).
71
B.
Tsurutani
,
M.
Sugiura
,
T.
Iyemori
,
B. E.
Goldstein
,
W. D.
Gonzalez
,
S.-I.
Akasofu
, and
E. J.
Smith
,
Geophys. Res. Lett.
17
,
279
282
, https://doi.org/10.1029/GL017i003p00279 (
1990
).
72
R.
Sharma
,
R. B.
Pachori
, and
U. R.
Acharya
,
Entropy
17
,
669
(
2015
).
73
S.-S.
Laiw
and
F.-Y.
Chiu
,
Adv. Adapt. Data Anal.
2
,
509
(
2010
).
74
A. E.
Hramov
and
A. A.
Koronovskii
,
Chaos
14
,
603
(
2004
).
75
A. A.
Koronovskii
and
A. E.
Hramov
,
Techn. Phys. Lett.
30
,
29
(
2004
).
76
R.
Donner
, “
Phase coherence analysis of decadal-scale sunspot activity on both solar hemispheres
,” in
Nonlinear Time Series Analysis in the Geosciences
,
Lecture Notes in Earth Sciences
, edited by
R. V.
Donner
and
S. M.
Barbosa
(
Springer
,
2008
), Vol.
112
, pp.
355
385
.
77
S.
Gupta
,
S.
De
,
M. S.
Janaki
, and
A. N.
Sekar Iyengar
,
Phys. Rev. E
100
,
022218
(
2019
).
80
T.
Alberti
,
G.
Consolini
, and
V.
Carbone
,
Chaos
29
,
103107
(
2019
).
81
S.
Lovejoy
,
Nonlin. Process. Geophys. Discuss.
(published online).
82
N.
Rehman
and
D. P.
Mandic
,
Proc. R. Soc. A
466
,
1291
(
2010
).
83
See https://omniweb.gsfc.nasa.gov/ for OMNI data in GSFC/SPDF OMNIWeb interface.
You do not currently have access to this content.