We present a new four-step feedback procedure to study the full dynamics of a nonlinear dynamical system, namely, the logistic map. We show that by using this procedure, the chaotic behavior of the logistic map can be controlled easily and rapidly or the system can be made stable for higher values of the population growth parameter. We utilize various dynamical techniques (orbit evolution, time series analysis, bifurcation diagrams, and Lyapunov exponents) to analyze the dynamics of the logistic map. Additionally, we adopt the switching strategy to control chaos or to increase the stability performance of the logistic map. Finally, we propose a modified traffic control model to enable rapid control of unexpected traffic on the road. The results of this model are supported by a physical interpretation. The model is found to be more efficient than existing models of Lo and Cho [J. Franklin Inst. 342, 839–851 (2005)] and Ashish et al. [Nonlinear Dyn. 94, 959–975 (2018)]. This work provides a novel feedback procedure that facilitates rapid control of chaotic behavior and increases the range of stability of dynamical systems.

1.
X.
Long
and
S.
Gong
, “
New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays
,”
Appl. Math. Lett.
100
,
106027
(
2020
).
2.
C.
Huang
,
H.
Zhang
,
J.
Cao
, and
H.
Hu
, “
Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator
,”
Int. J. Bifurcat. Chaos
29
,
1950091
(
2019
).
3.
C.
Huang
,
Z.
Yang
,
T.
Yi
, and
X.
Zou
, “
On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities
,”
J. Differ. Equ.
256
,
2101
2114
(
2014
).
4.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
5.
R. M.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
6.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer
,
1990
).
7.
M.
Ausloos
and
M.
Dirickx
,
The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications
(
Springer Science & Business Media
,
2006
).
8.
Z.
Elhadj
and
J.
Sprott
, “
The effect of modulating a parameter in the logistic map
,”
Chaos
18
,
023119
(
2008
).
9.
R. A.
Holmgren
,
A First Course in Discrete Dynamical Systems
(
Springer-Verlag
,
1994
).
10.
P.
Diamond
, “
Chaotic behaviour of systems of difference equations
,”
Int. J. Syst. Sci.
7
,
953
956
(
1976
).
11.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer-Verlag
,
1996
).
12.
M.
Martelli
,
Introduction to Discrete Dynamical Systems and Chaos
(
John Wiley & Sons
,
1999
).
13.
J.
Briggs
,
Fractals: The Patterns of Chaos: Discovering a New Aesthetic of Art, Science, and Nature
(
Simon and Schuster
,
1992
).
14.
S.
Kumari
,
R.
Chugh
,
J.
Cao
, and
C.
Huang
, “
Multi fractals of generalized multivalued iterated function systems in b-metric spaces with applications
,”
Mathematics
7
,
967
(
2019
).
15.
S.
Kumari
,
R.
Chugh
,
J.
Cao
, and
C.
Huang
, “
On the construction, properties and Hausdorff dimension of random Cantor one pth set
,”
AIMS Math.
5
,
3138
(
2020
).
16.
C.
Song
,
S.
Fei
,
J.
Cao
, and
C.
Huang
, “
Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control
,”
Mathematics
7
,
599
(
2019
).
17.
G.
Rajchakit
,
A.
Pratap
,
R.
Raja
,
J.
Cao
,
J.
Alzabut
, and
C.
Huang
, “
Hybrid control scheme for projective lag synchronization of Riemann–Liouville sense fractional order memristive BAM neural networks with mixed delays
,”
Mathematics
7
,
759
(
2019
).
18.
P. F.
Verhulst
, “
Recherches mathématiques sur la loi d'accroissement de la population,
Nouveaux mémoires de l'Académie Royale des Sciences et Belles-lettres de Bruxelles
18
,
1
41
(
1845
).
19.
R. L.
Devaney
,
A First Course In Chaotic Dynamical Systems: Theory and Experiment
(
Westview Press
,
1992
).
20.
N.
Singh
and
A.
Sinha
, “
Chaos-based secure communication system using logistic map
,”
Opt. Laser. Eng.
48
,
398
404
(
2010
).
21.
R.
Vazquez-Medina
,
A.
Díaz-Méndez
,
J.
del Río-Correa
, and
J.
López-Hernández
, “
Design of chaotic analog noise generators with logistic map and MOS QT circuits
,”
Chaos Solitons Fractals
40
,
1779
1793
(
2009
).
22.
A.
Díaz-Méndez
,
J.
Marquina-Pérez
,
M.
Cruz-Irisson
,
R.
Vazquez-Medina
, and
J. L.
Del-Río-Correa
, “
Chaotic noise MOS generator based on logistic map
,”
Microelectron. J.
40
,
638
640
(
2009
).
23.
M.
Baptista
, “
Chaos in cryptography
,”
Phys. Lett. A
240
,
50
54
(
1998
).
24.
L. P.
de Oliveira
and
M.
Sobottka
, “
Cryptography with chaotic mixing
,”
Chaos Solitons Fractals
35
,
466
471
(
2008
).
25.
N.
Smaoui
and
A.
Kanso
, “
Cryptography with chaos and shadowing
,”
Chaos Solitons Fractals
42
,
2312
2321
(
2009
).
26.
P.
Heinz-Otto
and
H. J. D.
Saupe
,
Chaos and Fractals
(
Springer-Verlag
,
2004
).
27.
M.
Rani
, “Iterative procedure in fractals and chaos,” Ph.D. thesis (Gurukula Kangri Vishwavidyalaya, Haridwar, India, 2002).
28.
A.
Sharkovsky
,
Y.
Maistrenko
, and
E. Y.
Romanenko
,
Difference Equations and Their Applications
(
Springer Science & Business Media
,
1993
), Vol. 250.
29.
R.
Chugh
,
M.
Rani
, and
A.
Kumar
, “
On the Convergence of Logistic map in Noor orbit
,”
International Journal of Computer Applications
43
(
18
),
1
4
(
2012
).
30.
Ashish
and
J.
Cao
, “
A novel fixed point feedback approach studying the dynamical behaviors of standard logistic map
,”
Int. J. Bifurcat. Chaos
29
,
1950010
(
2019
).
31.
G.
Chen
and
Y.
Huang
,
Chaotic Maps: Dynamics, Fractals, and Rapid Fluctuations,
Synthesis Lectures on Mathematics and Statistics (Morgan & Claypool, 2011), Vol. 4, pp. 1–241.
32.
M.
Andrecut
, “
Logistic map as a random number generator
,”
Int. J. Mod. Phys. B
12
,
921
930
(
1998
).
33.
A. R.
Chowdhury
and
M.
Debnath
, “
Periodicity and chaos in a modulated logistic map
,”
Int. J. Theor. Phys.
29
,
779
788
(
1990
).
34.
H.
Hadj-Salem
and
J.
Blosseville
, “ALINEA: A local feedback control law for on-ramp metering; a real-life study,” in Third International Conference on Road Traffic Control, 1990, London, UK (IET, 1990), pp. 194–198.
35.
P.
Kachroo
and
K.
Özbay
,
Feedback Control Theory for Dynamic Traffic Assignment
(
Springer
,
1999
).
36.
M.
Treiber
and
A.
Kesting
,
Traffic Flow Dynamics: Data, Models and Simulation
(
Springer
,
2013
).
37.
D.
Jarrett
and
Z.
Xiaoyan
, “The dynamic behaviour of road traffic flow,” in Applications of Fractals and Chaos (Springer, 1993), pp. 237–248.
38.
X.
Zhang
and
D. F.
Jarrett
, “
Stability analysis of the classical car-following model
,”
Transp. Res. B Meth.
31
,
441
462
(
1997
).
39.
P.
Shang
,
X.
Li
, and
S.
Kamae
, “
Chaotic analysis of traffic time series
,”
Chaos Solitons Fractals
25
,
121
128
(
2005
).
40.
S. C.
Lo
and
H. J.
Cho
, “
Chaos and control of discrete dynamic traffic model
,”
J. Franklin Inst.
342
,
839
851
(
2005
).
41.
Ashish
,
J.
Cao
, and
R.
Chugh
, “
Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model
,”
Nonlinear Dyn.
94
,
959
975
(
2018
).
42.
Ashish
,
J.
Cao
, and
R.
Chugh
, “
Controlling chaos using superior feedback technique with applications in discrete traffic models
,”
Int. J. Fuzzy Syst.
21
,
1467
1479
(
2019
).
43.
W.
Phuengrattana
and
S.
Suantai
, “
On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval
,”
J. Comput. Appl. Math.
235
,
3006
3014
(
2011
).
44.
S.
Kumari
and
R.
Chugh
, “
A new experiment with the convergence and stability of logistic map via SP orbit
,”
Int. J. Appl. Eng. Res.
14
,
797
801
(
2019
).
45.
S.
Kumari
,
R.
Chugh
, and
A.
Nandal
, “
Bifurcation analysis of logistic map using four step feedback procedure
,”
Int. J. Eng. Adv. Technol.
9
,
704
707
(
2019
).
46.
G. P.
Harmer
and
D.
Abbott
, “
Game theory: Losing strategies can win by Parrondo’s paradox
,”
Nature
402
,
864
(
1999
).
47.
K. H.
Cheong
,
Z. X.
Tan
, and
Y. H.
Ling
, “
A time-based switching scheme for nomadic-colonial alternation under noisy conditions
,”
Commun. Nonlinear Sci. Numer. Simul.
60
,
107
114
(
2018
).
48.
W. K.
Tang
and
M.-F.
Danca
, “
Emulating “Chaos+Chaos=Order” in Chen’s circuit of fractional order by parameter switching
,”
Int. J. Bifurcat. Chaos
26
,
1650096
(
2016
).
49.
M.
Pasamontes
,
J.
Álvarez
,
J.
Guzmán
,
J.
Lemos
, and
M.
Berenguel
, “
A switching control strategy applied to a solar collector field
,”
Control Eng. Pract.
19
,
135
145
(
2011
).
50.
G.
Zhenhai
,
W.
Jun
,
H.
Hongyu
,
Y.
Wei
,
W.
Dazhi
, and
W.
Lin
, “
Multi-argument control mode switching strategy for adaptive cruise control system
,”
Procedia Eng.
137
,
581
589
(
2016
).
51.
P.
Diakaki
,
D.
Kotsialos
, and
Y.
Wang
, “
Review of road traffic control strategies
,”
Proc. IEEE
91
,
2041
2042
(
2004
).
52.
J. S.
Canovas
and
M.
Munoz
, “
Revisiting Parrondo’s paradox for the logistic family
,”
Fluct. Noise Lett.
12
,
1350015
(
2013
).
53.
E.
Peacock-López
, “
Seasonality as a Parrondian game
,”
Phys. Lett. A
375
,
3124
3129
(
2011
).
54.
E. A.
Levinsohn
,
S. A.
Mendoza
, and
E.
Peacock-López
, “
Switching induced complex dynamics in an extended logistic map
,”
Chaos Solitons Fractals
45
,
426
432
(
2012
).
55.
M. P.
Maier
and
E.
Peacock-López
, “
Switching induced oscillations in the logistic map
,”
Phys. Lett. A
374
,
1028
1032
(
2010
).
56.
A.
Yadav
and
K.
Jha
, “
Parrondo’s paradox in the Noor logistic map
,”
Int. J. Adv. Res. Eng. Technol.
7
(
5
),
1
16
(
2016
).
57.
M.-F.
Danca
,
M.
Fečkan
, and
M.
Romera
, “
Generalized form of Parrondo’s paradoxical game with applications to chaos control
,”
Int. J. Bifurcat. Chaos
24
,
1450008
(
2014
).
58.
G. P.
Harmer
and
D.
Abbott
, “
Parrondo’s paradox
,”
Stat. Sci.
14
,
206
213
(
1999
).
59.
G. P.
Harmer
,
D.
Abbott
, and
P. G.
Taylor
, “
The paradox of Parrondo’s games
,”
Proc. Math. Phys. Eng. Sci.
456
,
247
259
(
2000
).
60.
E.
Peacock López
and
K.
Lindenberg
, “
The transient Flory model and its application to catalytic polymerization. 1
,”
J. Phys. Chem.
88
(
11
),
2270
2275
(
1984
).
61.
E.
Peacock López
and
K.
Lindenberg
, “
The transient Flory model and its application to catalytic polymerization. 2
,”
J. Phys. Chem.
90
,
1725
1732
(
1986
).
62.
J.
Almeida
,
D.
Peralta-Salas
, and
M.
Romera
, “
Can two chaotic systems give rise to order?
,”
Physica D
200
,
124
132
(
2005
).
63.
C. J.
Khisti
,
Transportation Engineering: An Introduction
(
Prentice Hall
,
1998
).
You do not currently have access to this content.