Via evaluation of the Lyapunov exponent, we report the discovery of three prominent sets of phase space regimes of quasiperiodic orbits of charged particles trapped in a dipole magnetic field. Besides the low energy regime that has been studied extensively and covers more than 10% in each dimension of the phase space of trapped orbits, there are two sets of high energy regimes, the largest of which covers more than 4% in each dimension of the phase space of trapped orbits. Particles in these high-energy orbits may be observed in space and be realized in plasma experiments on the earth.

1.
N.
Srivastava
,
C.
Kaufman
, and
G.
Müller
, “
Hamiltonian chaos
,”
Comput. Phys.
4
,
549
(
1990
).
2.
V. I.
Arnol’d
, “
Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian
,”
Russ. Math. Surv.
18
,
9
36
(
1963
).
3.
A.
Mavraganis
and
C. L.
Goudas
, “
New types of motion in Störmer’s problem
,”
Astrophys. Space Sci.
32
,
115
138
(
1975
).
4.
V. V.
Markellos
,
S.
Klimopoulos
, and
A. A.
Halioulias
, “
Periodic motions in the meridian plane of a magnetic dipole, I
,”
Celest. Mech.
17
,
215
232
(
1978
).
5.
L.
Jimenez-Lara
and
E.
Pina
, “
Periodic orbits of an electric charge in a magnetic dipole field
,”
Celest. Mech. Dyn. Astron.
49
,
327
345
(
1990
).
6.
O. F.
De Alcantara Bonfim
,
D. J.
Griffiths
, and
S.
Hinkley
, “
Chaotic and hyperchaotic motion of a charged particle in a magnetic dipole field
,”
Int. J. Bifurcat. Chaos
10
,
265
271
(
2000
).
7.
R.
De Vogelaere
, “
Equation de Hill et probleme de Störmer
,”
Can. J. Math.
2
,
440
456
(
1950
).
8.
C.
Störmer
, “
Periodische elektronenbahnen im felde eines elementarmagneten und ihre anwendung auf brüches modellversuche und auf eschenhagens elementarwellen des erdmagnetismus. Mit 32 abbildungen
,”
Z. Astrophys.
1
,
237
(
1930
), see https://ui.adsabs.harvard.edu/abs/1930ZA......1..237S.
9.
A. J.
Dragt
, “
Trapped orbits in a magnetic dipole field
,”
Rev. Geophys.
3
,
255
298
, https://doi.org/10.1029/RG003i002p00255 (
1965
).
10.
S.
Murakami
,
T.
Sato
, and
A.
Hasegawa
, “
Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field
,”
Phys. Fluids B: Plasma Phys.
2
,
715
724
(
1990
).
11.
H.
Saitoh
,
Z.
Yoshida
,
Y.
Yano
,
M.
Nishiura
,
Y.
Kawazura
,
J.
Horn-Stanja
, and
T. S.
Pedersen
, “
Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme
,”
Phys. Rev. E
94
,
043203
(
2016
).
12.
N.
Kenmochi
,
M.
Nishiura
,
K.
Nakamura
, and
Z.
Yoshida
, “
Tomographic reconstruction of imaging diagnostics with a generative adversarial network
,”
Plasma Fusion Res.
14
,
1202117
(
2019
).
13.
T. G.
Northrop
, “
Adiabatic charged-particle motion
,”
Rev. Geophys.
1
,
283
304
, https://doi.org/10.1029/RG001i003p00283 (
1963
).
14.
A. J.
Dragt
and
J. M.
Finn
, “
Insolubility of trapped particle motion in a magnetic dipole field
,”
J. Geophys. Res. (1896–1977)
81
,
2327
2340
, https://doi.org/10.1029/JA081i013p02327 (
1976
).
15.
J.
Horn-Stanja
,
S.
Nißl
,
U.
Hergenhahn
,
T.
Sunn Pedersen
,
H.
Saitoh
,
E. V.
Stenson
,
M.
Dickmann
,
C.
Hugenschmidt
,
M.
Singer
,
M. R.
Stoneking
, and
J. R.
Danielson
, “
Confinement of positrons exceeding 1 s in a supported magnetic dipole trap
,”
Phys. Rev. Lett.
121
,
235003
(
2018
).
16.
D. N.
Baker
,
A. N.
Jaynes
,
V. C.
Hoxie
,
R. M.
Thorne
,
J. C.
Foster
,
X.
Li
,
J. F.
Fennell
,
J. R.
Wygant
,
S. G.
Kanekal
,
P. J.
Erickson
,
W.
Kurth
,
W.
Li
,
Q.
Ma
,
Q.
Schiller
,
L.
Blum
,
D. M.
Malaspina
,
A.
Gerrard
, and
L. J.
Lanzerotti
, “
An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts
,”
Nature
515
,
531
534
(
2014
).
17.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J. M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. I—Theory. II—Numerical application
,”
Meccanica
15
,
9
30
(
1980
).
18.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
19.
E.
Zehnder
, “
Homoclinic points near elliptic fixed points
,”
Commun. Pure Appl. Math.
26
,
131
182
(
1973
).
You do not currently have access to this content.