Via evaluation of the Lyapunov exponent, we report the discovery of three prominent sets of phase space regimes of quasiperiodic orbits of charged particles trapped in a dipole magnetic field. Besides the low energy regime that has been studied extensively and covers more than in each dimension of the phase space of trapped orbits, there are two sets of high energy regimes, the largest of which covers more than in each dimension of the phase space of trapped orbits. Particles in these high-energy orbits may be observed in space and be realized in plasma experiments on the earth.
REFERENCES
1.
N.
Srivastava
, C.
Kaufman
, and G.
Müller
, “Hamiltonian chaos
,” Comput. Phys.
4
, 549
(1990
).2.
V. I.
Arnol’d
, “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian
,” Russ. Math. Surv.
18
, 9
–36
(1963
).3.
A.
Mavraganis
and C. L.
Goudas
, “New types of motion in Störmer’s problem
,” Astrophys. Space Sci.
32
, 115
–138
(1975
).4.
V. V.
Markellos
, S.
Klimopoulos
, and A. A.
Halioulias
, “Periodic motions in the meridian plane of a magnetic dipole, I
,” Celest. Mech.
17
, 215
–232
(1978
).5.
L.
Jimenez-Lara
and E.
Pina
, “Periodic orbits of an electric charge in a magnetic dipole field
,” Celest. Mech. Dyn. Astron.
49
, 327
–345
(1990
). 6.
O. F.
De Alcantara Bonfim
, D. J.
Griffiths
, and S.
Hinkley
, “Chaotic and hyperchaotic motion of a charged particle in a magnetic dipole field
,” Int. J. Bifurcat. Chaos
10
, 265
–271
(2000
). 7.
R.
De Vogelaere
, “Equation de Hill et probleme de Störmer
,” Can. J. Math.
2
, 440
–456
(1950
). 8.
C.
Störmer
, “Periodische elektronenbahnen im felde eines elementarmagneten und ihre anwendung auf brüches modellversuche und auf eschenhagens elementarwellen des erdmagnetismus. Mit 32 abbildungen
,” Z. Astrophys.
1
, 237
(1930
), see https://ui.adsabs.harvard.edu/abs/1930ZA......1..237S.9.
A. J.
Dragt
, “Trapped orbits in a magnetic dipole field
,” Rev. Geophys.
3
, 255
–298
, https://doi.org/10.1029/RG003i002p00255 (1965
). 10.
S.
Murakami
, T.
Sato
, and A.
Hasegawa
, “Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field
,” Phys. Fluids B: Plasma Phys.
2
, 715
–724
(1990
). 11.
H.
Saitoh
, Z.
Yoshida
, Y.
Yano
, M.
Nishiura
, Y.
Kawazura
, J.
Horn-Stanja
, and T. S.
Pedersen
, “Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme
,” Phys. Rev. E
94
, 043203
(2016
).12.
N.
Kenmochi
, M.
Nishiura
, K.
Nakamura
, and Z.
Yoshida
, “Tomographic reconstruction of imaging diagnostics with a generative adversarial network
,” Plasma Fusion Res.
14
, 1202117
(2019
). 13.
T. G.
Northrop
, “Adiabatic charged-particle motion
,” Rev. Geophys.
1
, 283
–304
, https://doi.org/10.1029/RG001i003p00283 (1963
). 14.
A. J.
Dragt
and J. M.
Finn
, “Insolubility of trapped particle motion in a magnetic dipole field
,” J. Geophys. Res. (1896–1977)
81
, 2327
–2340
, https://doi.org/10.1029/JA081i013p02327 (1976
). 15.
J.
Horn-Stanja
, S.
Nißl
, U.
Hergenhahn
, T.
Sunn Pedersen
, H.
Saitoh
, E. V.
Stenson
, M.
Dickmann
, C.
Hugenschmidt
, M.
Singer
, M. R.
Stoneking
, and J. R.
Danielson
, “Confinement of positrons exceeding 1 s in a supported magnetic dipole trap
,” Phys. Rev. Lett.
121
, 235003
(2018
). 16.
D. N.
Baker
, A. N.
Jaynes
, V. C.
Hoxie
, R. M.
Thorne
, J. C.
Foster
, X.
Li
, J. F.
Fennell
, J. R.
Wygant
, S. G.
Kanekal
, P. J.
Erickson
, W.
Kurth
, W.
Li
, Q.
Ma
, Q.
Schiller
, L.
Blum
, D. M.
Malaspina
, A.
Gerrard
, and L. J.
Lanzerotti
, “An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts
,” Nature
515
, 531
–534
(2014
). 17.
G.
Benettin
, L.
Galgani
, A.
Giorgilli
, and J. M.
Strelcyn
, “Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. I—Theory. II—Numerical application
,” Meccanica
15
, 9
–30
(1980
). 18.
A.
Wolf
, J. B.
Swift
, H. L.
Swinney
, and J. A.
Vastano
, “Determining Lyapunov exponents from a time series
,” Physica D
16
, 285
–317
(1985
). 19.
E.
Zehnder
, “Homoclinic points near elliptic fixed points
,” Commun. Pure Appl. Math.
26
, 131
–182
(1973
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.