A single-species reaction–diffusion model is used for studying the coexistence of multiple stable steady states. In these systems, one can define a potential-like functional that contains the stability properties of the states, and the essentials of the motion of wave fronts in one- and two-dimensional space. Using a quintic polynomial for the reaction term and taking advantage of the well-known butterfly bifurcation, we analyze the different scenarios involving the competition of two and three stable steady states, based on equipotential curves and points in parameter space. The predicted behaviors, including a front splitting instability, are contrasted to numerical integrations of reaction fronts in two dimensions.
REFERENCES
1.
2.
V.
Méndez
, S.
Fedotov
, and W.
Horsthemke
, Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(Springer
, Berlin
, 2010
).3.
T.
Erneux
, G.
Kozyreff
, and M.
Tlidi
, “Bifurcation to fronts due to delay
,” Philos. Trans. R. Soc. A
368
, 483
–493
(2010
). 4.
A.
Otto
, J.
Wang
, and G.
Radons
, “Delay-induced wave instabilities in single-species reaction–diffusion systems
,” Phys. Rev. E
96
, 052202
(2017
). 5.
J.
Rombouts
, L.
Gelens
, and T.
Erneux
, “Travelling fronts in time-delayed reaction–diffusion systems
,” Philos. Trans. R. Soc. A
377
, 20180127
(2019
). 6.
R.
Benguria
and M.
Depassier
, “Exact fronts for the nonlinear diffusion equation with quintic nonlinearities
,” Phys. Rev. E
50
, 3701
–3704
(1994
). 7.
R.
Benguria
and M.
Depassier
, “Speed of fronts of the reaction–diffusion equation
,” Phys. Rev. Lett.
77
, 1171
–1173
(1996
). 8.
M.
Bär
, C.
Zülicke
, M.
Eiswirth
, and G.
Ertl
, “Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics
,” J. Chem. Phys.
96
, 8595
–8604
(1992
). 9.
J.
Cisternas
and M.
Depassier
, “Counterexample to a conjecture of Goriely for the speed of fronts of the reaction–diffusion equation
,” Phys. Rev. E
55
, 3701
–3704
(1997
). 10.
S.
Wehner
, P.
Hoffmann
, D.
Schmeisser
, H.
Brand
, and J.
Küppers
, “Spatiotemporal patterns of external noise-induced transitions in a bistable reaction–diffusion system: Photoelectron emission microscopy, experiments and modeling
,” Phys. Rev. Lett.
95
, 1
–4
(2005
). 11.
S.
Karpitschka
, S.
Wehner
, and J.
Küppers
, “Reaction hysteresis of the reaction on palladium(111)
,” J. Chem. Phys.
130
, 054706
(2009
). 12.
J.
Cisternas
, S.
Karpitschka
, and S.
Wehner
, “Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion
,” J. Chem. Phys.
141
, 164106
(2014
). 13.
T.
Cui
, S.
Tang
, L.
Zhang
, and D.
Yu
, “Swallowtail model for predicting the global bifurcation behavior of CO oxidation reactions
,” Sci. China Chem.
54
, 1072
–1077
(2011
). 14.
F.
Stegemerten
, S.
Gurevich
, and U.
Thiele
, “Bifurcations of front motion in passive and active Allen–Cahn-type equations
,” Chaos
30
, 053136
(2020
). 15.
K.
Rohe
, J.
Cisternas
, and S.
Wehner
, “Competing ternary surface reaction on Ir(111)
,” Proc. R. Soc. A
476
, 20190712
(2020
). 16.
P.
Fife
and J.
McLeod
, “The approach of solutions of nonlinear diffusion equations to travelling front solutions
,” Arch. Ration. Mech. Anal.
65
, 335
–361
(1977
). 17.
J.
Bechhoefer
, H.
Löwen
, and L.
Tuckerman
, “Dynamical mechanism for the formation of metastable phases
,” Phys. Rev. Lett.
67
, 1266
–1269
(1991
). 18.
L.
Tuckerman
and J.
Bechhoefer
, “Dynamical mechanism for the formation of metastable phases: The case of two nonconserved order parameters
,” Phys. Rev. A
46
, 3178
–3192
(1992
). 19.
J.
Rubinstein
, P.
Sternberg
, and J.
Keller
, “Front interaction and nonhomogeneous equilibria for tristable reaction–diffusion
,” SIAM J. Appl. Math.
53
, 1669
–1685
(1993
). 20.
J.
Rinzel
and D.
Terman
, “Propagation phenomena in a bistable reaction–diffusion system
,” SIAM J. Appl. Math.
42
, 1111
–1137
(1982
). 21.
A.
Hagberg
and E.
Meron
, “Pattern formation in non-gradient reaction–diffusion systems: The effects of front bifurcations
,” Nonlinearity
7
, 805
–835
(1994
). 22.
M.
Chirilus-Bruckner
, A.
Doelman
, P.
van Heijster
, and J.
Rademacher
, “Butterfly catastrophe for fronts in a three-component reaction–diffusion system
,” J. Nonlinear Sci.
25
, 87
–129
(2014
). 23.
T.
Poston
and I.
Stewart
, Catastrophe Theory and Its Applications
(Dover Publications
, Mineola
, 1996
).24.
E.
Zemskov
, “Front bifurcation in a tristable reaction–diffusion system under periodic forcing
,” Phys. Rev. E
69
, 036208
(2004
). 25.
D.
Wetzel
, “Tristability between stripes, up-hexagons, and down-hexagons and snaking bifurcation branches of spatial connections between up- and down-hexagons
,” Phys. Rev. E
97
, 062221
(2018
). 26.
Y.
Zelnik
, P.
Gandhi
, E.
Knobloch
, and E.
Meron
, “Implications of tristability in pattern-forming ecosystems
,” Chaos
28
, 033609
(2018
). 27.
D.
Aronson
and H.
Weinberger
, “Multidimensional nonlinear diffusion arising in population genetics
,” Adv. Math.
30
, 33
–76
(1978
). 28.
S.
Shvartsman
, E.
Shütz
, R.
Imbihl
, and I.
Kevrekidis
, “Dynamics on microcomposite catalytic surfaces: The effect of active boundaries
,” Phys. Rev. Lett.
83
, 2857
–2860
(1999
). 29.
W.
van Saarloos
, “Front propagation into unstable states II: Linear versus nonlinear marginal stability and rate of convergence
,” Phys. Rev. A
39
, 6367
–6390
(1989
). 30.
I.
Epstein
and J.
Pojman
, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(Oxford University Press
, Oxford
, 1998
).31.
E.
Doedel
, “AUTO-07p: Continuation and bifurcation software for ordinary differential equations,” Technical Report No. 46 (Concordia University, 2007).32.
E.
Doedel
and M.
Friedman
, “Numerical computation of heteroclinic orbits
,” J. Comput. Appl. Math.
26
, 155
–170
(1989
). 33.
F.
Hecht
, “New development in freefem++
,” J. Numer. Math.
20
, 251
–265
(2012
). 34.
A.
Makeev
and R.
Imbihl
, “Simulation of traveling interface pulses in bistable surface reactions
,” Phys. Rev. E
100
, 042206
(2019
). 35.
P.
Coullet
, J.
Lega
, B.
Houchmandzadeh
, and J.
Lajzerowicz
, “Breaking chirality in nonequilibrium systems
,” Phys. Rev. Lett.
65
, 1352
–1355
(1990
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.