Dynamical effects on healthy brains and brains affected by tumor are investigated via numerical simulations. The brains are modeled as multilayer networks consisting of neuronal oscillators whose connectivities are extracted from Magnetic Resonance Imaging (MRI) data. The numerical results demonstrate that the healthy brain presents chimera-like states where regions with high white matter concentrations in the direction connecting the two hemispheres act as the coherent domain, while the rest of the brain presents incoherent oscillations. To the contrary, in brains with destructed structures, traveling waves are produced initiated at the region where the tumor is located. These areas act as the pacemaker of the waves sweeping across the brain. The numerical simulations are performed using two neuronal models: (a) the FitzHugh–Nagumo model and (b) the leaky integrate-and-fire model. Both models give consistent results regarding the chimera-like oscillations in healthy brains and the pacemaker effect in the tumorous brains. These results are considered a starting point for further investigation in the detection of tumors with small sizes before becoming discernible on MRI recordings as well as in tumor development and evolution.

1.
H.
Gao
and
X.
Jiang
, “
Progress on the diagnosis and evaluation of brain tumors
,”
Cancer Imaging
13
,
466
481
(
2013
).
2.
R.
Pratt
and
N. J. C.
Stapelberg
, “
Early warning biomarkers in major depressive disorder: A strategic approach to a testing question
,”
Biomarkers
23
,
563
572
(
2018
).
3.
N.
Galldiks
,
P.
Lohmann
,
N. L.
Albert
,
J. C.
Tonn
, and
K.-J.
Langen
, “
Current status of PET imaging in neuro-oncology
,”
Neuro-Oncol. Adv.
1
,
vdz010
(
2019
).
4.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
Cambridge
,
2018
).
5.
J. L. P.
Velazquez
and
R.
Wennberg
, Coordinated Activity in the Brain, Springer Series in Computational Neuroscience, Vol. 2 (Springer Science, 2009).
6.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
The MIT Press
,
Cambridge
,
2007
).
7.
W.
Gerstner
and
W. M.
Kistler
,
Spiking Neuron Models: Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
Cambridge
,
2002
).
8.
E. R.
Kandel
,
J. H.
Schwartz
,
T. M.
Jessell
,
S. A.
Siegelbaum
, and
A. J.
Hudspeth
,
Principles of Neural Science
, 5th ed. (
The McGraw-Hill Companies, Inc.
,
New York
,
2013
).
9.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
, “
All together now: Analogies between chimera state collapses and epileptic seizures
,”
Sci. Rep.
6
,
23000
(
2016
).
10.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
(
2000
).
11.
S.
Olmi
,
S.
Petkoski
,
M.
Guye
,
F.
Bartolomei
, and
V.
Jirsa
, “
Controlling seizure propagation in large-scale brain networks
,”
PLoS Comput. Biol.
15
,
e1006805
(
2019
).
12.
T.
Chouzouris
,
I.
Omelchenko
,
A.
Zakharova
,
J.
Hlinka
,
P.
Jiruska
, and
E.
Schöll
, “
Chimera states in brain networks: Empirical neural vs modular fractal connectivity
,”
Chaos
28
,
045112
(
2018
).
13.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
); arXiv:cond-mat/0210694.
14.
Y.
Kuramoto
, “Reduction methods applied to nonlocally coupled oscillator systems,” in Nonlinear Dynamics and Chaos: Where Do We Go from Here?, edited by S. J. Hogan, A. R. Champneys, A. R. Krauskopf, M. di Bernado, R. E. Wilson, H. M. Osinga, and M. E. Homer (CRC Press, 2002), pp. 209–227.
15.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
16.
H.
Sakaguchi
, “
Instability of synchronized motion in nonlocally coupled neural oscillators
,”
Phys. Rev. E
73
,
031907
(
2006
).
17.
I.
Omelchenko
,
O. E.
Omel’chenko
,
P.
Hövel
, and
E.
Schöll
, “
When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multi-chimera states
,”
Phys. Rev. Lett.
110
,
224101
(
2013
).
18.
I.
Omelchenko
,
A.
Provata
,
J.
Hizanidis
,
E.
Schöll
, and
P.
Hövel
, “
Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
,”
Phys. Rev. E
91
,
022917
(
2015
).
19.
A.
Schmidt
,
T.
Kasimatis
,
J.
Hizanidis
,
A.
Provata
, and
P.
Hövel
, “
Chimera patterns in two-dimensional networks of coupled neurons
,”
Phys. Rev. E
95
,
032224
(
2017
).
20.
J.
Hizanidis
,
V.
Kanas
,
A.
Bezerianos
, and
T.
Bountis
, “
Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models
,”
Int. J. Bifurcat. Chaos
24
,
1450030
(
2014
).
21.
S.
Ulonska
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in networks of Van der Pol oscillators with hierarchical connectivities
,”
Chaos
26
,
094825
(
2016
).
22.
S.
Olmi
,
E. A.
Martens
,
S.
Thutupalli
, and
A.
Torcini
, “
Intermittent chaotic chimeras for coupled rotators
,”
Phys. Rev. E
92
,
030901
(
2015
).
23.
N. D.
Tsigkri-DeSmedt
,
J.
Hizanidis
,
E.
Schöll
,
P.
Hövel
, and
A.
Provata
, “
Chimeras in leaky integrate-and-fire neural networks: Effects of reflecting connectivities
,”
Eur. Phys. J. B
90
,
139
(
2017
).
24.
N. D.
Tsigkri-DeSmedt
,
I.
Koulierakis
,
G.
Karakos
, and
A.
Provata
, “
Synchronization patterns in LIF neuron networks: Merging nonlocal and diagonal connectivity
,”
Eur. Phys. J. B
91
,
305
(
2018
).
25.
V.
Santos
,
J. D. J.
Szezech
,
A. M.
Batista
,
K. C.
Iarosz
,
M. S.
Baptista
,
H. P.
Ren
,
C.
Grebogi
,
R. L.
Viana
,
I. L.
Caldas
,
Y. L.
Maistrenko
, and
J.
Kurths
, “
Riddling: Chimera’s dilemma
,”
Chaos
28
,
081105
(
2018
).
26.
A.
Gjurchinovski
,
E.
Schöll
, and
A.
Zakharova
, “
Control of amplitude chimeras by time delay in dynamical networks
,”
Phys. Rev. E
95
,
042218
(
2017
).
27.
A.
Zakharova
,
N.
Semenova
,
V. S.
Anishchenko
, and
E.
Schöll
, “
Time-delayed feedback control of coherence resonance chimeras
,”
Chaos
27
,
114320
(
2017
).
28.
I.
Shepelev
and
T.
Vadivasova
, “
Variety of spatio-temporal regimes in a 2D lattice of coupled bistable Fitzhugh-Nagumo oscillators. Formation mechanisms of spiral and double-well chimeras
,”
Commun. Nonlinear Sci. Numer. Simul.
79
,
104925
(
2019
).
29.
M. J.
Panaggio
and
D.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
R87
(
2015
).
30.
E.
Schöll
, “
Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
,”
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
31.
N.
Yao
and
Z.
Zheng
, “
Chimera states in spatiotemporal systems: Theory and applications
,”
Int. J. Mod. Phys. B
30
,
1630002
(
2016
).
32.
S.
Majhi
,
B. K.
Bera
,
D.
Ghosh
, and
M.
Perc
, “
Chimera states in neuronal networks: A review
,”
Phys. Life Rev.
28
,
100
121
(
2019
).
33.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
34.
A.
Zakharova
, Chimera Patterns in Networks: Interplay Between Dynamics, Structure, Noise, and Delay, Understanding Complex Systems (Springer International Publishing, 2020).
35.
A.
M.Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
, “
Experimental observation of chimeras in coupled-map lattices
,”
Nat. Phys.
8
,
658
(
2012
).
36.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
(
2012
).
37.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns
,”
PLoS One
8
,
e80586
(
2013
).
38.
L.
Schmidt
,
K.
Schönleber
,
K.
Krischer
, and
V.
García-Morales
, “
Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
,”
Chaos
24
,
013102
(
2014
).
39.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
40.
T.
Kapitaniak
and
J.
Kurths
, “
Synchronized pendula: From Huygens’ clocks to chimera states
,”
Eur. Phys. J. Spec. Top.
223
,
609
612
(
2014
).
41.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
, “
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
,”
Phys. Rev. E
90
,
032905
(
2014
).
42.
E. M.
Cherry
and
F. H.
Fenton
, “
Visualization of spiral and scroll waves in simulated and experimental cardiac tissues
,”
New J. Phys.
10
,
125016
(
2008
).
43.
F.
Mormann
,
T.
Kreuz
,
R. G.
Andrzejak
,
P.
David
,
K.
Lehnertz
, and
C. E.
Elger
, “
Epileptic seizures are preceded by a decrease in synchronization
,”
Epilepsy Res.
53
,
173
(
2003
).
44.
M. S.
Santos
,
J. D.
Szezech
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Chimera-like states in a neuronal network model of the cat brain
,”
Chaos Solitons Fractals
101
,
86
91
(
2017
).
45.
N.
Lazarides
,
G.
Neofotistos
, and
G. P.
Tsironis
, “
Chimeras in squid metamaterials
,”
Phys. Rev. B
91
,
054303
(
2015
).
46.
J.
Hizanidis
,
N.
Lazarides
, and
G. P.
Tsironis
, “
Robust chimera states in squid metamaterials with local interactions
,”
Phys. Rev. E
94
,
032219
(
2016
).
47.
G.
Ruzzene
,
I.
Omelchenko
,
E.
Schöll
,
A.
Zakharova
, and
R. G.
Andrzejak
, “
Controlling chimera states via minimal coupling modification
,”
Chaos
29
,
0511031
(
2019
).
48.
K.
Bansal
,
J. O.
Garcia
,
S. H.
Tompson
,
T.
Verstynen
,
J. M.
Vettel
, and
S. F.
Muldoon
, “
Cognitive chimera states in human brain networks
,”
Sci. Adv.
5
,
eaau853
(
2019
).
49.
J.
Hizanidis
,
E.
Panagakou
,
I.
Omelchenko
,
E.
Schöll
,
P.
Hövel
, and
A.
Provata
, “
Chimera states in population dynamics: Networks with fragmented and hierarchical connectivities
,”
Phys. Rev. E
92
,
012915
(
2015
).
50.
N. D.
Tsigkri-DeSmedt
,
J.
Hizanidis
,
P.
Hövel
, and
A.
Provata
, “
Multi-chimera states and transitions in the leaky integrate-and-fire model with nonlocal and hierarchical connectivity
,”
Eur. Phys. J. Spec. Top.
225
,
1149
1164
(
2016
).
51.
N. C.
Rattenborg
,
C. J.
Amlaner
, and
S. L.
Lima
, “
Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep
,”
Neurosci. Biobehav. Rev.
24
,
817
842
(
2000
).
52.
N. C.
Rattenborg
, “
Do birds sleep in flight?
,”
Naturwissenschaften
93
,
413
425
(
2006
).
53.
L.
Ramlow
,
J.
Sawicki
,
A.
Zakharova
,
J.
Hlinka
,
J. C.
Claussen
, and
E.
Schöll
, “
Partial synchronization in empirical brain networks as a model for unihemispheric sleep
,”
Europhys. Lett.
126
,
50007
(
2019
).
54.
B. K.
Bera
,
S.
Rakshit
,
D.
Ghosh
, and
J.
Kurths
, “
Spike chimera states and firing regularities in neuronal hypernetworks
,”
Chaos
29
,
053115
(
2019
).
55.
D. L.
Bihan
,
J. F.
Mangin
,
C.
Poupon
,
C. A.
Clark
,
S.
Pappata
,
N.
Molko
, and
H.
Chabriat
, “
Diffusion tensor imaging: Concepts and applications
,”
J. Magn. Reson. Imaging
13
,
534
546
(
2001
).
56.
P. J.
Basser
,
J.
Mattiello
, and
D. L.
Bihan
, “
MR diffusion tensor spectroscopy and imaging
,”
Biophys. J.
66
,
259
267
(
1994
).
57.
P. J.
Basser
,
J.
Mattiello
, and
D. L.
Bihan
, “
Estimation of the effective self-diffusion tensor from the NMR spin echo
,”
J. Magn. Reson. B
103
,
247
254
(
1994
).
58.
T.
Sugahara
,
Y.
Korogi
,
M.
Kochi
,
I.
Ikushima
,
Y.
Shigematu
,
T.
Hirai
,
T.
Okuda
,
L.
Liang
,
Y.
Ge
,
Y.
Komohara
,
Y.
Ushio
, and
M.
Takahashi
, “
Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas
,”
J. Magn. Reson. Imaging
9
,
53
69
(
1999
).
59.
P. J.
Basser
,
S.
Pajevic
,
C.
Pierpaoli
,
J.
Duda
, and
A.
Aldroubi
, “
In vivo fiber tractography using DT-MRI data
,”
Magn. Reson. Med.
44
,
625
632
(
2000
).
60.
S.
Mori
and
P. C. M.
van Zijl
, “
Fiber tracking: Principles and strategies—A technical review
,”
NMR Biomed.
15
,
468
480
(
2002
).
61.
D. A.
Sipkins
,
D. A.
Cheresh
,
M. R.
Kazemi
,
L. M.
Nevin
,
M. D.
Bednarski
, and
K. C.
Li
, “
Detection of tumor angiogenesis in vivo by α{v}β3-targeted magnetic resonance imaging
,”
Nat. Med.
4
,
623
626
(
1998
).
62.
S.
Mori
and
J.
Zhang
, “
Principles of diffusion tensor imaging and its applications to basic neuroscience
,”
Neuron
51
,
527
539
(
2007
).
63.
P.
Katsaloulis
,
D. A.
Verganelakis
, and
A.
Provata
, “
Fractal dimension and lacunarity of tractography images of the human brain
,”
Fractals
17
,
181
189
(
2009
).
64.
P.
Katsaloulis
,
A.
Ghosh
,
A. C.
Philippe
,
A.
Provata
, and
R.
Deriche
, “
Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI
,”
Eur. Phys. J. B
85
,
150
(
2012
).
65.
P.
Katsaloulis
,
J.
Hizanidis
,
D. A.
Verganelakis
, and
A.
Provata
, “
Complexity measures and noise effects on diffusion magnetic resonance imaging of the neuron axons network in the human brain
,”
Fluctuation Noise Lett.
11
,
1250032
(
2012
).
66.
A.
Provata
,
P.
Katsaloulis
, and
D. A.
Verganelakis
, “
Dynamics of chaotic maps for modelling the multifractal spectrum of human brain diffusion tensor images
,”
Chaos Solitons Fractals
45
,
174
180
(
2012
).
67.
J.
Wang
,
S.-L.
Xu
et al., “
Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1–SOX2 positive-feedback loop
,”
Nat. Neurosci.
22
,
91
105
(
2019
).
68.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
(
1961
).
69.
J.
Nagumo
,
A.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. Inst. Radio Eng.
50
,
2061
(
1962
).
70.
A. E.
Pereda
, “
Electrical synapses and their functional interactions with chemical synapses
,”
Nat. Rev. Neurosci.
15
,
250
263
(
2014
).
71.
M. A.
Kiskowski
,
M. S.
Alber
,
G. L.
Thomas
,
J. A.
Glazier
,
N. B.
Bronstein
,
J.
Pu
, and
S. A.
Newman
, “
Interplay between activator–inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning
,”
Dev. Biol.
271
,
372
387
(
2004
).
72.
O. E.
Omel’chenko
,
M.
Wolfrum
, and
Y. L.
Maistrenko
, “
Chimera states as chaotic spatiotemporal patterns
,”
Phys. Rev. E
81
,
065201
(
2010
).
73.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
, “
Weak multiplexing in neural networks: Switching between chimera and solitary states
,”
Chaos
29
,
023122
(
2019
).
74.
N.
Brunel
and
M. C. W.
van Rossum
, “
Lapicque’s 1907 paper: From frogs to integrate-and-fire
,”
Brain Res. Bull.
50
,
303
304
(
1999
).
75.
L. F.
Abott
, “
Lapicque’s introduction of the integrate-and-fire model neuron (1907)
,”
Biol. Cybern.
97
,
337
339
(
2007
).
76.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Chimera states in uncoupled neurons induced by a multilayer structure
,”
Sci. Rep.
6
,
39033
(
2016
).
77.
E.
Schöll
,
A.
Zakharova
, and
R. G.
Andrzejak
, “
Editorial: Chimera states in complex networks
,”
Front. Appl. Math. Stat.
5
,
62
(
2019
).
78.
P.
Hagmann
,
L.
Cammoun
et al., “
Mapping the structural core of human cerebral cortex
,”
PLoS Biol.
6
,
e159
(
2008
).
79.
S.
Castro
,
W.
El-Deredy
,
D.
Battaglia
, and
P.
Orio
, “
Cortical ignition dynamics is tightly linked to the core organisation of the human connectome
,”
PLoS Comput. Bio.
16
,
e1007686
(
2020
).
80.
M.
Carboni
,
M.
Rubega
et al., “
The network integration of epileptic activity in relation to surgical outcome
,”
Clin. Neurophysiol.
130
,
2193
2202
(
2019
).
81.
A.
Griffa
,
P. S.
Baumann
et al., “
Brain connectivity alterations in early psychosis: From clinical to neuroimaging staging
,”
Transl. Psychiatry
9
,
62
(
2019
).

Supplementary Material

You do not currently have access to this content.