Within data gathered through passive monitoring of patients with Multiple Sclerosis (MS), there is a clear necessity for improved methodological approaches to match the emergence of continuous, objective, measuring technologies. As most gold standards measure infrequently and require clinician presence, fluctuations in the daily progression are not accounted for. Due to the underlying conditions of homogeneity and stationarity (the main tenets of ergodicity) not being met for the majority of the statistical methods employed in the clinical setting, alternative approaches should be investigated. A solution is to use a non-linear time series analysis approach. Here, Early-Warning Signals (EWS) in the form of critical fluctuations in Keystroke Dynamics (KD), collected using participant’s smartphones, are investigated as indicators for a clinical change in three groups. These are patients with MS and changes in Magnetic Resonance Imaging (MRI), patients with MS but without changes in MRI, and healthy controls (HCs). Here, we report examples of EWS and changes in KD coinciding with clinically relevant changes in outcome measures in both patients with and without differences in the amount of MRI enhancing lesions. We also report no clinically relevant changes in EWS in the HC population. This study is a first promising step toward using EWS to identify periods of instability as measured by a continuous objective measure as a proxy for outcome measures in the field of MS.

1.
M.
Ulinskas
,
R.
Damaševičius
,
R.
Maskeliūnas
, and
M.
Woźniak
, “
Recognition of human daytime fatigue using keystroke data
,”
Procedia Comput. Sci.
130
,
947
952
(
2018
).
2.
F.
Monrose
and
A. D.
Rubin
, “
Keystroke dynamics as a biometric for authentication
,”
Future Gener. Comput. Syst.
16
,
351
359
(
2000
).
3.
J. H.
Noseworthy
, “
Progress in determining the causes and treatment of multiple sclerosis
,”
Nature
399
,
A40
A47
(
1999
).
4.
M. H.
Sutliff
, “
Contribution of impaired mobility to patient burden in multiple sclerosis
,”
Curr. Med. Res. Opin.
26
,
109
119
(
2010
).
5.
H.
Inojosa
,
D.
Schriefer
, and
T.
Ziemssen
, “
Clinical outcome measures in multiple sclerosis: A review
,”
Autoimmun. Rev.
19
,
102512
(
2020
).
6.
G.
Giovannoni
,
R.
Bermel
,
T.
Phillips
, and
R.
Rudick
, “
A brief history of NEDA
,”
Mult. Scler. Relat. Disord.
20
,
228
230
(
2018
).
7.
F. D.
Lublin
,
S. C.
Reingold
,
J. A.
Cohen
,
G. R.
Cutter
,
P. S.
Sørensen
,
A. J.
Thompson
,
J. S.
Wolinsky
,
L. J.
Balcer
,
B.
Banwell
,
F.
Barkhof
et al., “
Defining the clinical course of multiple sclerosis: The 2013 revisions
,”
Neurology
83
,
278
286
(
2014
).
8.
J.
Kragt
,
J.
Nielsen
,
F. A.
van der Linden
,
B. M.
Uitdehaag
, and
C.
Polman
, “
How similar are commonly combined criteria for EDSS progression in multiple sclerosis?
,”
Mult. Scler. J.
12
,
782
786
(
2006
).
9.
P.
Feys
,
I.
Lamers
,
G.
Francis
,
R.
Benedict
,
G.
Phillips
,
N.
LaRocca
,
L. D.
Hudson
,
R.
Rudick
, and
M. S. O. A. Consortium
, “
The nine-hole peg test as a manual dexterity performance measure for multiple sclerosis
,”
Mult. Scler. J.
23
,
711
720
(
2017
).
10.
J.
Kragt
,
F. A.
van der Linden
,
J.
Nielsen
,
B. M.
Uitdehaag
, and
C.
Polman
, “
Clinical impact of 20% worsening on timed 25-foot walk and 9-hole peg test in multiple sclerosis
,”
Mult. Scler. J.
12
,
594
598
(
2006
).
11.
D. A.
Robbins
,
F. A.
Curro
, and
C. H.
Fox
, “
Defining patient-centricity: Opportunities, challenges, and implications for clinical care and research
,”
Ther. Innov. Regul. Sci.
47
,
349
355
(
2013
).
12.
N. S.
Sharma
, “
Patient centric approach for clinical trials: Current trend and new opportunities
,”
Perspect. Clin. Res.
6
,
134
(
2015
).
13.
See http://neurokeys.app/ for “Neurokeys” (2016); accessed 20 June 2020.
14.
See https://www.neurocast.nl/ for “Neurocast,” Neurocast B.V. (2016); accessed 20 June 2020.
15.
T.-Y.
Chang
, “
Dynamically generate a long-lived private key based on password keystroke features and neural network
,”
Inf. Sci.
211
,
36
47
(
2012
).
16.
T.
Anusas-amornkul
and
K.
Wangsuk
, “A comparison of keystroke dynamics techniques for user authentication,” in 2015 International Computer Science and Engineering Conference (ICSEC) (IEEE, 2015), pp. 1–5.
17.
A.
Darabseh
and
A. S.
Namin
, “Effective user authentications using keystroke dynamics based on feature selections,” in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2015), pp. 307–312.
18.
K.-H.
Lam
,
K.
Meijer
,
F.
Loonstra
,
E.
Coerver
,
J.
Twose
,
E.
Redeman
,
B.
Moraal
,
F.
Barkhof
,
V.
de Groot
,
B.
Uitdehaag
, and
J.
Killestein
, “
Real-world keystroke dynamics are a potentially valid biomarker for clinical disability in multiple sclerosis
,”
Mult. Scler. J.
(
to be published, 2020
).
19.
D.
Iakovakis
,
S.
Hadjidimitriou
,
V.
Charisis
,
S.
Bostantzopoulou
,
Z.
Katsarou
, and
L. J.
Hadjileontiadis
, “
Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease
,”
Sci. Rep.
8
,
7663
(
2018
).
20.
R.-E.
Mastoras
,
D.
Iakovakis
,
S.
Hadjidimitriou
,
V.
Charisis
,
S.
Kassie
,
T.
Alsaadi
,
A.
Khandoker
, and
L. J.
Hadjileontiadis
, “
Touchscreen typing pattern analysis for remote detection of the depressive tendency
,”
Sci. Rep.
9
,
13414
(
2019
).
21.
K.-H.
Lam
,
J.
Twose
,
H.
McConchie
,
G.
Licitra
,
B.
Moraal
,
F.
Barkhof
,
B.
Uitdehaag
,
V.
de Groot
, and
J.
Killestein
, “Smartphone keystroke dynamics are sensitive to changes in disease activity and clinical disability measures in multiple sclerosis,” in European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (MSVirtual2020, 2020).
22.
M.
Tanigawa
,
J.
Stein
,
J.
Park
,
P.
Kosa
,
I.
Cortese
, and
B.
Bielekova
, “
Finger and foot tapping as alternative outcomes of upper and lower extremity function in multiple sclerosis
,”
Mult. Scler. J. Exp. Transl. Clin.
3
(
2017
).
23.
T.
Chitnis
,
B. I.
Glanz
,
C.
Gonzalez
,
B. C.
Healy
,
T. J.
Saraceno
,
N.
Sattarnezhad
,
C.
Diaz-Cruz
,
M.
Polgar-Turcsanyi
,
S.
Tummala
,
R.
Bakshi
et al., “
Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis
,”
NPJ Digit. Med.
2
,
123
(
2019
).
24.
A.
Habibipour
,
A. M.
Padyab
, and
A.
Ståhlbröst
, “Social, ethical and ecological issues in wearable technologies,” in AMCIS 2019, Twenty-Fifth Americas Conference on Information Systems, Cancun, México, 15–17 Augusti 2019 (Association for Information Systems, 2019), pp. 1–10.
25.
M.
Olthof
,
F.
Hasselman
,
F. O.
Maatman
,
A.
Bosman
, and
A.
Lichtwarck-Aschoff
, “Adaptive dynamic pattern theory (ADAPT) of psychopathology,” PsyArXiv (2020).
26.
M.
Olthof
,
F.
Hasselman
, and
A.
Lichtwarck-Aschoff
, “Complexity in psychological self-ratings: Implications for research and practice,” PsyArXiv (2020).
27.
J.
Jeong
, “
EEG dynamics in patients with Alzheimer’s disease
,”
Clin. Neurophysiol.
115
,
1490
1505
(
2004
).
28.
M. O.
Sokunbi
,
W.
Fung
,
V.
Sawlani
,
S.
Choppin
,
D. E.
Linden
, and
J.
Thome
, “
Resting state FMRI entropy probes complexity of brain activity in adults with ADHD
,”
Psychiatry Res.: Neuroimaging
214
,
341
348
(
2013
).
29.
M.
Nardelli
,
G.
Valenza
,
I. A.
Cristea
,
C.
Gentili
,
C.
Cotet
,
D.
David
,
A.
Lanata
, and
E. P.
Scilingo
, “
Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics
,”
Front. Comput. Neurosci.
9
,
37
(
2015
).
30.
M.
Olthof
,
F.
Hasselman
,
G.
Strunk
,
B.
Aas
,
G.
Schiepek
, and
A.
Lichtwarck-Aschoff
, “
Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders
,”
Psychother. Res.
30
,
520
531
(
2020
).
31.
M.
Olthof
,
F.
Hasselman
,
G.
Strunk
,
M.
van Rooij
,
B.
Aas
,
M. A.
Helmich
,
G.
Schiepek
, and
A.
Lichtwarck-Aschoff
, “
Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders
,”
Clin. Psychol. Sci.
8
,
25
35
(
2020
).
32.
U. W.
Kaunzner
and
S. A.
Gauthier
, “
MRI in the assessment and monitoring of multiple sclerosis: An update on best practice
,”
Ther. Adv. Neurol. Disord.
10
,
247
261
(
2017
).
33.
C. I.
Coleman
,
D. M.
Sobieraj
, and
L. N.
Marinucci
, “
Minimally important clinical difference of the timed 25-foot walk test: Results from a randomized controlled trial in patients with multiple sclerosis
,”
Curr. Med. Res. Opin.
28
,
49
56
(
2012
).
34.
C. E.
van Munster
,
L.
Kaya
,
M.
Obura
,
N. F.
Kalkers
, and
B. M.
Uitdehaag
, “
Minimal clinically important difference of improvement on the arm function in multiple sclerosis questionnaire (AMSQ)
,”
Mult. Scler. J.
26
,
505
508
(
2020
).
35.
L.
Strober
,
J.
DeLuca
,
R. H.
Benedict
,
A.
Jacobs
,
J. A.
Cohen
,
N.
Chiaravalloti
,
L. D.
Hudson
,
R. A.
Rudick
,
N. G.
LaRocca
, and
M. S. O. A. Consortium
, “
Symbol digit modalities test: A valid clinical trial endpoint for measuring cognition in multiple sclerosis
,”
Mult. Scler. J.
25
,
1781
1790
(
2019
).
36.
S.
Rooney
,
A.
McFadyen
,
L.
Wood
,
F.
Moffat
, and
L.
Paul
, “
Minimally important difference of the fatigue severity scale and modified fatigue impact scale in people with multiple sclerosis
,”
Mult. Scler. Relat. Disord.
35
,
158
163
(
2019
).
37.
J. B.
Peters
,
Y. F.
Heijdra
,
L.
Daudey
,
L. M.
Boer
,
J.
Molema
,
P. R.
Dekhuijzen
,
T. R.
Schermer
, and
J. H.
Vercoulen
, “
Course of normal and abnormal fatigue in patients with chronic obstructive pulmonary disease, and its relationship with domains of health status
,”
Patient Educ. Couns.
85
,
281
285
(
2011
).
38.
L. M.
Vizer
,
L.
Zhou
, and
A.
Sears
, “
Automated stress detection using keystroke and linguistic features: An exploratory study
,”
Int. J. Hum. Comput. Stud.
67
,
870
886
(
2009
).
39.
L. M.
Vizer
and
A.
Sears
, “
Classifying text-based computer interactions for health monitoring
,”
IEEE Pervasive Comput.
14
,
64
71
(
2015
).
40.
L. M.
Vizer
and
A.
Sears
, “
Efficacy of personalized models in discriminating high cognitive demand conditions using text-based interactions
,”
Int. J. Hum. Comput. Stud.
104
,
80
96
(
2017
).
41.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
42.
J. F.
Donges
,
J.
Heitzig
,
B.
Beronov
,
M.
Wiedermann
,
J.
Runge
,
Q. Y.
Feng
,
L.
Tupikina
,
V.
Stolbova
,
R. V.
Donner
,
N.
Marwan
et al., “
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
,”
Chaos
25
,
113101
(
2015
).
43.
S.
Van Buuren
,
Flexible Imputation of Missing Data
(
CRC Press
,
2018
).
44.
S.
van Buuren
and
K.
Groothuis-Oudshoorn
, “
Mice: Multivariate imputation by chained equations in R
,”
J. Stat. Softw.
45
,
1
67
(
2011
).
45.
S. V.
Buuren
,
J. P.
Brand
,
C. G.
Groothuis-Oudshoorn
, and
D. B.
Rubin
, “
Fully conditional specification in multivariate imputation
,”
J. Stat. Comput. Simul.
76
,
1049
1064
(
2006
).
46.
C.
Webber
and
N.
Marwan
, “Recurrence Quantification Analysis: Theory and Best Practices (Springer, 2015).
47.
G. E.
Box
,
G. M.
Jenkins
,
G. C.
Reinsel
, and
G. M.
Ljung
,
Time Series Analysis: Forecasting and Control
(
John Wiley & Sons
,
2015
).
48.
U.
an der Heiden
, “Chaos in health and disease—Phenomenology and theory,” in Self-Organization and Clinical Psychology (Springer, 1992), pp. 55–87.
49.
H.
Hermann
and
J.
Haken
, “Synergetics,” in Introduction and Advanced Topics (Springer, Berlin, 2004).
50.
G.
Schiepek
and
G.
Strunk
, “
The identification of critical fluctuations and phase transitions in short term and coarse-grained time series’a method for the real-time monitoring of human change processes
,”
Biol. Cybern.
102
,
197
207
(
2010
).
51.
G. K.
Schiepek
,
I.
Tominschek
, and
S.
Heinzel
, “
Self-organization in psychotherapy: Testing the synergetic model of change processes
,”
Front. Psychol.
5
,
1089
(
2014
).
52.
F.
Hasselman
, “casnet: A toolbox for studying complex adaptive systems and networks,” R package version 0.1.3 (2018).
53.
L. L.
Doove
,
S.
Van Buuren
, and
E.
Dusseldorp
, “
Recursive partitioning for missing data imputation in the presence of interaction effects
,”
Comput. Stat. Data Anal.
72
,
92
104
(
2014
).
54.
G.
Schiepek
,
B.
Aas
, and
K.
Viol
, “
The mathematics of psychotherapy—A nonlinear model of change dynamics
,”
Nonlinear Dyn. Psychol. Life Sci.
20
,
369
399
(
2016
), PMID: 27262423.
55.
F.
Hasselman
, “
When the blind curve is finite: Dimension estimation and model inference based on empirical waveforms
,”
Front. Physiol.
4
,
75
(
2013
).

Supplementary Material

You do not currently have access to this content.