We study the origin of homoclinic chaos in the classical 3D model proposed by Rössler in 1976. Of our particular interest are the convoluted bifurcations of the Shilnikov saddle-foci and how their synergy determines the global bifurcation unfolding of the model, along with transformations of its chaotic attractors. We apply two computational methods proposed, one based on interval maps and a symbolic approach specifically tailored to this model, to scrutinize homoclinic bifurcations, as well as to detect the regions of structurally stable and chaotic dynamics in the parameter space of the Rössler model.
REFERENCES
1.
O. E.
Rössler
, “An equation for continuous chaos
,” Phys. Lett. A
57
, 397
–398
(1976
). 2.
O. E.
Rössler
, “Continuous chaos four prototype equations
,” Ann. N. Y. Acad. Sci.
316
, 376
–392
(1979
). 3.
O.
Rossler
, “An equation for hyperchaos
,” Phys. Lett. A
71
, 155
–157
(1979
).4.
L. P.
Shilnikov
, “A case of the existence of a denumerable set of periodic motions,” Dokl. Akad. Nauk SSSR
160
, 558
–561
(1965
).5.
C.
Letellier
and O. E.
Rossler
, “Rössler attractor
,” Scholarpedia
1
, 1721
(2006
). 6.
See https://en.wikipedia.org/wiki/Rössler_attractor for more information about “Rossler attractor.”
7.
M.
Hénon
, “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors, edited by B. R. Hunt et al. (Springer, 1976), pp. 94–102.8.
I.
Ovsyannikov
and L. P.
Shilnikov
, “On systems with a saddle-focus homoclinic curve
,” Mat. Sb.
172
, 552
–570
(1986
).9.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Oscillators with chaotic behavior: An illustration of a theorem by Shilnikov
,” J. Stat. Phys.
27
, 171
–182
(1982
). 10.
D.
Turaev
and L. P.
Shilnikov
, “An example of a wild strange attractor
,” Sb. Math.
189
, 137
–160
(1998
). 11.
D.
Turaev
and L.
Shilnikov
, “Pseudohyperbolicity and the problem of periodic perturbation of Lorenz-like attractors
,” Dokl. Math.
77
, 23
–27
(2008
). 12.
V. S.
Afraimovich
and L. P.
Shilnikov
, “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman, New York, 1983), pp. 1–28.13.
S.
Gonchenko
, L. P.
Shil’nikov
, and D.
Turaev
, “Quasiattractors and homoclinic tangencies
,” Comput. Math. Appl.
34
, 195
–227
(1997
). 14.
S.
Gonchenko
, A.
Kazakov
, and D.
Turaev
, “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system
,” Nonlinearity
(to be published).15.
A.
Lempel
and J.
Ziv
, “On the complexity of finite sequences
,” IEEE Trans. Inf. Theory
22
, 75
–81
(1976
). 16.
T.
Xing
, J.
Wojcik
, M. A.
Zaks
, and A. L.
Shilnikov
, “Fractal parameter space of Lorenz-like attractors: A hierarchical approach,” in Chaos, Information Processing and Paradoxical Games: The Legacy of John S Nicolis (World Scientific, 2015), pp. 87–104.17.
T.
Xing
, R.
Barrio
, and A. L.
Shilnikov
, “Symbolic quest into homoclinic chaos
,” Int. J. Bifurcation Chaos
24
, 1440004
(2014
). 18.
R.
Barrio
, F.
Blesa
, S.
Serrano
, T.
Xing
, and A. L.
Shilnikov
, “Homoclinic spirals: Theory and numerics,” in Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics, Vol. 54 (2013).19.
K.
Pusuluri
and A.
Shilnikov
, “Homoclinic chaos and its organization in a nonlinear optics model
,” Phys. Rev. E
98
, 040202
(2018
). 20.
K.
Pusuluri
, A.
Pikovsky
, and A.
Shilnikov
, “Unraveling the chaos-land and its organization in the Rabinovich system,” in Advances in Dynamics, Patterns, Cognition (Springer, 2017), pp. 41–60.21.
K.
Pusuluri
, H. G. E.
Meijer
, and A. L.
Shilnikov
, “Homoclinic puzzles and chaos in a nonlinear laser model
,” J. Commun. Nonlinear Sci. Numer. Simul.
93
, 105503
(2020
). 22.
K.
Pusuluri
and A. L.
Shilnikov
, “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific, 2019), pp. 97–102.23.
K.
Pusuluri
, H.
Ju
, and A. L.
Shilnikov
, “Chaotic dynamics in neural systems,” in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer, 2020), pp. 1–13.24.
K.
Pusuluri
, “Complex dynamics in dedicated/multifunctional neural networks and chaotic nonlinear systems,” Ph.D. thesis (GSU, 2020).25.
L. P.
Shilnikov
, “Bifurcation theory and turbulence. I
,” Methods Qual. Theory Differ. Equations
, 150
–163
(1986
); [L. P. Shilnikov “The theory of bifurcations and turbulence. I,” Selecta Math. Sov. 10, 43–53 (1991)].26.
O. E.
Rössler
, “Different types of chaos in two simple differential equations
,” Z. Naturforsch., A
31
, 1664
–1670
(1976
). 27.
R.
Barrio
, F.
Blesa
, and S.
Serrano
, “Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors
,” Physica D
238
, 1087
–1100
(2009
). 28.
P.
Gaspard
, R.
Kapral
, and G.
Nicolis
, “Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,” J. Stat. Phys.
35
, 697
–727
(1984
). 29.
C.
Letellier
, P.
Dutertre
, and B.
Maheu
, “Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,” Chaos
5
, 271
–282
(1995
). 30.
S.
Fraser
and R.
Kapral
, “Analysis of flow hysteresis by a one-dimensional map
,” Phys. Rev. A
25
, 3223
(1982
). 31.
A.
Dhooge
, W.
Govaerts
, Y. A.
Kuznetsov
, H. G. E.
Meijer
, and B.
Sautois
, “New features of the software MatCont for bifurcation analysis of dynamical systems
,” Math. Comput. Model. Dyn. Syst.
14
, 147
–175
(2008
). 32.
V.
De Witte
, W.
Govaerts
, Y. A.
Kuznetsov
, and M.
Friedman
, “Interactive initialization and continuation of homoclinic and heteroclinic orbits in Matlab
,” ACM Trans. Math. Softw.
38
, 18
(2012
). 33.
L. P.
Shilnikov
, A. L.
Shilnikov
, D. V.
Turaev
, and L. O.
Chua
, Methods of Qualitative Theory in Nonlinear Dynamics. Parts I and II, World Scientific Series on Nonlinear Science, Series A Vol. 5 (World Scientific, 1998).34.
V. S.
Afraimovich
, S. V.
Gonchenko
, L. M.
Lerman
, A. L.
Shilnikov
, and D. V.
Turaev
, “Scientific heritage of L.P. Shilnikov
,” Regul. Chaotic Dyn.
19
, 435
–460
(2014
). 35.
L. P.
Shilnikov
and A. L.
Shilnikov
, “Shilnikov bifurcation
,” Scholarpedia
2
, 1891
(2007
). 36.
N. K.
Gavrilov
and L. P.
Shilnikov
, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I
,” Math. USSR-Sb.
17
, 467
(1972
). 37.
N. K.
Gavrilov
and L. P.
Shilnikov
, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II
,” Math. USSR-Sb.
19
, 139
(1973
). 38.
R.
Barrio
, F.
Blesa
, S.
Serrano
, and A. L.
Shilnikov
, “Global organization of spiral structures in biparametric space of dissipative systems with Shilnikov saddle-foci
,” Phys. Rev. E
84
, 035201
(2011
). 39.
C.
Bonatto
and J. A.
Gallas
, “Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit
,” Phys. Rev. Lett.
101
, 054101
(2008
). 40.
J. A.
Gallas
, “The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows
,” Int. J. Bifurcation Chaos
20
, 197
–211
(2010
). 41.
R.
Vitolo
, P.
Glendinning
, and J. A.
Gallas
, “Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows
,” Phys. Rev. E
84
(5
), 016216
(2011
). 42.
L.
Belyakov
, “Bifurcation set in a system with a homoclinic curve of a saddle
,” Math. Notes Acad. Sci. USSR
28
(6
), 910
–916
(1980
).43.
L.
Belyakov
, “Bifurcation of systems with a homoclinic curve of a saddle-focus with zero saddle value
,” Math. Notes Acad. Sci. USSR
36
(5
), 838
–843
(1984
).44.
L.
Belyakov
, “On one case of the birth of a periodic orbit with homoclinic curves
,” Math. Notes Acad. Sci. USSR
15
(4
), 571
–580
(1974
).45.
Y. A.
Kuznetsov
, O.
De Feo
, and S.
Rinaldi
, “Belyakov homoclinic bifurcations in a tritrophic food chain model
,” SIAM J. Appl. Math.
62
, 462
–487
(2001
). 46.
Y. V.
Bakhanova
, A. O.
Kazakov
, A. G.
Korotkov
, T. A.
Levanova
, and G. V.
Osipov
, “Spiral attractors as the root of a new type of ‘bursting activity’ in the Rosenzweig–MacArthur model
,” Eur. Phys. J. Spec. Top.
227
, 959
–970
(2018
). 47.
A.
Kazakov
and A.
Korotkov
, “On spiral chaos of 3D flows,” in Proceedings of the International Conference—School Dynamics, Bifurcation and Chaos (Lobachevsky State University, 2018), pp. 15–1648.
A.
Gonchenko
, S.
Gonchenko
, and L. P.
Shilnikov
, “Towards scenarios of chaos appearance in three-dimensional maps
,” Russ. J. Nonlinear Dyn.
8
, 3
–28
(2012
).49.
A.
Gonchenko
, S.
Gonchenko
, A.
Kazakov
, and D.
Turaev
, “Simple scenarios of onset of chaos in three-dimensional maps
,” Int. J. Bifurcation Chaos
24
, 1440005
(2014
). 50.
O.
De Feo
, G. M.
Maggio
, and M. P.
Kennedy
, “The Colpitts oscillator: Families of periodic solutions and their bifurcations
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
, 935
–958
(2000
). 51.
S. V.
Gonchenko
, D. V.
Turaev
, P.
Gaspard
, and G.
Nicolis
, “Complexity in the bifurcation structure of homoclinic loops to a saddle-focus
,” Nonlinearity
10
, 409
(1997
). 52.
T.
Xing
, K.
Pusuluri
, and A. L.
Shilnikov
, “Ordered intricacy of homoclinics of the L. Shilnikov saddle-focus in symmetric systems,” J. Chaos (submitted) (2020).53.
R. O.
Medrano-T.
, M. S.
Baptista
, and I. L.
Caldas
, “Basic structures of the Shilnikov homoclinic bifurcation scenario
,” Chaos
15
, 033112
(2005
). 54.
P.
Gaspard
, “Generation of a countable set of homoclinic flows through bifurcation
,” Phys. Lett. A
97
, 1
–4
(1983
). 55.
See https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/src/master/ for more information about “Deterministic chaos prospector.”
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.