Information-theoretic quantities have found wide applications in understanding interactions in complex systems primarily due to their non-parametric nature and ability to capture non-linear relationships. Increasingly popular among these tools is conditional transfer entropy, also known as causation entropy. In the present work, we leverage this tool to study the interaction among car drivers for the first time. Specifically, we investigate whether a driver responds to its immediate front and its immediate rear car to the same extent and whether we can separately quantify these responses. Using empirical data, we learn about the important features related to human driving behavior. Results demonstrate the evidence that drivers respond to both front and rear cars, and the response to their immediate front car increases in the presence of jammed traffic. Our approach provides a data-driven perspective to study interactions and is expected to aid in analyzing traffic dynamics.
Skip Nav Destination
Article navigation
November 2020
Research Article|
November 10 2020
Quantifying interactions among car drivers using information theory
Subhradeep Roy
Subhradeep Roy
a)
Department of Mechanical Engineering, California State University
, Northridge, Los Angeles, California 91330, USA
a)Author to whom correspondence should be addressed: subhradeep.roy@csun.edu
Search for other works by this author on:
a)Author to whom correspondence should be addressed: subhradeep.roy@csun.edu
Chaos 30, 113125 (2020)
Article history
Received:
July 27 2020
Accepted:
October 26 2020
Citation
Subhradeep Roy; Quantifying interactions among car drivers using information theory. Chaos 1 November 2020; 30 (11): 113125. https://doi.org/10.1063/5.0023243
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Recent achievements in nonlinear dynamics, synchronization, and networks
Dibakar Ghosh, Norbert Marwan, et al.
Templex-based dynamical units for a taxonomy of chaos
Caterina Mosto, Gisela D. Charó, et al.
Regime switching in coupled nonlinear systems: Sources, prediction, and control—Minireview and perspective on the Focus Issue
Igor Franović, Sebastian Eydam, et al.