Information-theoretic quantities have found wide applications in understanding interactions in complex systems primarily due to their non-parametric nature and ability to capture non-linear relationships. Increasingly popular among these tools is conditional transfer entropy, also known as causation entropy. In the present work, we leverage this tool to study the interaction among car drivers for the first time. Specifically, we investigate whether a driver responds to its immediate front and its immediate rear car to the same extent and whether we can separately quantify these responses. Using empirical data, we learn about the important features related to human driving behavior. Results demonstrate the evidence that drivers respond to both front and rear cars, and the response to their immediate front car increases in the presence of jammed traffic. Our approach provides a data-driven perspective to study interactions and is expected to aid in analyzing traffic dynamics.

1.
H.
Stromberg
,
I.
Pettersson
,
J.
Andersson
,
A.
Rydstrom
,
D.
Dey
,
M.
Klingegard
, and
J.
Forlizzi
, “
Designing for social experiences with and within autonomous vehicles–exploring methodological directions
,”
Des. Sci.
4
,
e13
(
2018
).
2.
L.
Malta
,
C.
Miyajima
, and
K.
Takeda
, “
A study of driver behavior under potential threats in vehicle traffic
,”
IEEE Trans. Intell. Transp. Syst.
10
,
201
210
(
2009
).
3.
M.
Pourabdollah
,
E.
Bjarkvik
,
F.
Furer
,
B.
Lindenberg
, and
K.
Burgdorf
, “Calibration and evaluation of car following models using real-world driving data,” in
IEEE International Conference on Intelligent Transportation Systems
(IEEE, 2017), pp. 1–6.
4.
M.
Conner
,
N.
Smith
, and
B.
McMillan
, “
Examining normative pressure in the theory of planned behaviour: Impact of gender and passengers on intentions to break the speed limit
,”
Curr. Psychol.
22
,
252
263
(
2003
).
5.
L.
Aberg
,
L.
Larsen
,
A.
Glad
, and
L.
Beilinsson
, “
Observed vehicle speed and drivers’ perceived speed of others
,”
Appl. Psychol.
46
,
287
302
(
1997
).
6.
B.
Palat
and
P.
Delhomme
, “
A simulator study of factors influencing drivers’ behavior at traffic lights
,”
Transp. Res. Part F Traffic Psychol. Behav.
37
,
107
118
(
2016
).
7.
I.
Pavlidis
,
M.
Dcosta
,
S.
Taamneh
,
M.
Manser
,
T.
Ferris
,
R.
Wunderlich
,
E.
Akleman
, and
P.
Tsiamyrtzis
, “
Dissecting driver behaviors under cognitive, emotional, sensorimotor, and mixed stressors
,”
Sci. Rep.
6
,
25651
(
2016
).
8.
M.
Costa
,
A.
Simone
,
V.
Vignali
,
C.
Lantieri
,
A.
Bucchi
, and
G.
Dondi
, “
Looking behavior for vertical road signs
,”
Transp. Res. Part F Traffic Psychol. Behav.
23
,
147
155
(
2014
).
9.
C.
Lantieri
,
R.
Lamperti
,
A.
Simone
,
M.
Costa
,
V.
Vignali
,
C.
Sangiorgi
, and
G.
Dondi
, “
Gateway design assessment in the transition from high to low speed areas
,”
Transp. Res. Part F Traffic Psychol. Behav.
34
,
41
53
(
2015
).
10.
M.
Land
and
B.
Tatler
,
Looking and Acting: Vision and Eye Movements in Natural Behaviour
(
Oxford University Press
,
2009
).
11.
G.
Underwood
,
P.
Chapman
,
Z.
Berger
, and
D.
Crundall
, “
Driving experience, attentional focusing, and the recall of recently inspected events
,”
Transp. Res. Part F Traffic Psychol. Behav.
6
,
289
304
(
2003
).
12.
M.
Palus
,
V.
Komarek
,
Z.
Hrncir
, and
K.
Sterbova
, “
Synchronization as adjustment of information rates: Detection from bivariate time series
,”
Phys. Rev. E
63
,
046211
(
2001
).
13.
J.
Sun
and
E. M.
Bollt
, “
Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings
,”
Physica D
267
,
49
57
(
2014
).
14.
R.
Vicente
,
M.
Wibral
,
M.
Lindner
, and
G.
Pipa
, “
Transfer entropy—a model-free measure of effective connectivity for the neurosciences
,”
J. Comput. Neurosci.
30
,
45
67
(
2011
).
15.
J.
Hlinka
,
D.
Hartman
,
M.
Vejmelka
,
J.
Runge
,
N.
Marwan
,
J.
Kurths
, and
M.
Palus
, “
Reliability of inference of directed climate networks using conditional mutual information
,”
Entropy
15
,
2023
2045
(
2013
).
16.
S.
Butail
,
V.
Mwaffo
, and
M.
Porfiri
, “
Model-free information-theoretic approach to infer leadership in pairs of zebrafish
,”
Phys. Rev. E
93
,
042411
(
2016
).
17.
S.
Roy
,
K.
Howes
,
R.
Müller
,
S.
Butail
, and
N.
Abaid
, “
Extracting interactions between flying bat pairs using model-free methods
,”
Entropy
21
,
42
(
2019
).
18.
C.
Grabow
,
J.
Macinko
,
D.
Silver
, and
M.
Porfiri
, “
Detecting causality in policy diffusion processes
,”
Chaos
26
,
083113
(
2016
).
19.
M.
Porfiri
,
R. R.
Sattanapalle
,
S.
Nakayama
,
J.
Macinko
, and
R.
Sipahi
, “
Media coverage and firearm acquisition in the aftermath of a mass shooting
,”
Nat. Hum. Behav.
3
,
913
921
(
2019
).
20.
R. G.
James
,
N.
Barnett
, and
J. P.
Crutchfield
, “
Information flows? A critique of transfer entropies
,”
Phys. Rev. Lett.
116
,
238701
(
2016
).
21.
K. R.
Pilkiewicz
,
B. H.
Lemasson
,
M. A.
Rowland
,
A.
Hein
,
J.
Sun
,
A.
Berdahl
,
M. L.
Mayo
,
J.
Moehlis
,
M.
Porfiri
, and
E.
Fernandez-Juricic
, “
Decoding collective communications using information theory tools
,”
J. R. Soc. Interface
17
,
20190563
(
2020
).
22.
T.
Bossomaier
,
L.
Barnett
,
M.
Harre
, and
J. T.
Lizier
,
An Introduction to Transfer Entropy
(
Springer International Publishing
,
Cham
,
2016
), pp.
65
95
.
23.
S.
Tadaki
,
M.
Kikuchi
,
M.
Fukui
,
A.
Nakayama
,
K.
Nishinari
,
A.
Shibata
,
Y.
Sugiyama
,
T.
Yosida
, and
S.
Yukawa
, “Phase transition in traffic jam experiment on a circuit,”
New J. Phys.
15
,
103034
(
2013
).
24.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
(
2000
).
25.
J. T.
Lizier
,
M.
Prokopenko
, and
A. Y.
Zomaya
, “
Local information transfer as a spatiotemporal filter for complex systems
,”
Phys. Rev. E
77
,
026110
(
2008
).
26.
J. T.
Lizier
,
J.
Heinzle
,
A.
Horstmann
,
J.-D.
Haynes
, and
M.
Prokopenko
, “
Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity
,”
J. Comput. Neurosci.
30
,
85
107
(
2011
).
27.
M.
Chavez
,
J.
Martinerie
, and
M.
Le Van Quyen
, “
Statistical assessment of nonlinear causality: Application to epileptic EEG signals
,”
J. Neurosci. Methods
124
,
113
128
(
2003
).
28.
J. T.
Lizier
, “
JIDT: An information-theoretic toolkit for studying the dynamics of complex systems
,”
Front. Rob. AI
1
,
11
(
2014
).
29.
A.
Kraskov
,
H.
Stogbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
,
066138
(
2004
).
30.
J. T.
Lizier
,
The Local Information Dynamics of Distributed Computation in Complex Systems
(
Springer Science & Business Media
,
2012
).
31.
L.
Novelli
and
J. T.
Lizier
, “Inferring network properties from time series via transfer entropy and mutual information: Validation of bivariate versus multivariate approaches,” arXiv:2007.07500 (2020).
32.
M.
Green
, “
How long does it take to stop? Methodological analysis of driver perception-brake times
,”
Transp. Hum. Factors
2
,
195
216
(
2000
).
33.
M.
Hollander
,
D. A.
Wolfe
, and
E.
Chicken
,
Nonparametric Statistical Methods
(
John Wiley & Sons
,
2013
), Vol.
751
.
34.
R.
Sipahi
and
S.-I.
Niculescu
, “Deterministic time-delayed traffic flow models: A survey,” in Complex Time-Delay Systems (Springer, 2009), pp. 297–322.
You do not currently have access to this content.