The coronavirus disease 2019 (COVID-19) outbreak, due to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), originated in Wuhan, China and is now a global pandemic. The unavailability of vaccines, delays in diagnosis of the disease, and lack of proper treatment resources are the leading causes of the rapid spread of COVID-19. The world is now facing a rapid loss of human lives and socioeconomic status. As a mathematical model can provide some real pictures of the disease spread, enabling better prevention measures. In this study, we propose and analyze a mathematical model to describe the COVID-19 pandemic. We have derived the threshold parameter basic reproduction number, and a detailed sensitivity analysis of this most crucial threshold parameter has been performed to determine the most sensitive indices. Finally, the model is applied to describe COVID-19 scenarios in India, the second-largest populated country in the world, and some of its vulnerable states. We also have short-term forecasting of COVID-19, and we have observed that controlling only one model parameter can significantly reduce the disease’s vulnerability.

1.
G.
Birkoff
and
G. C.
Rota
,
Ordinary Differential Equations
(
Ginn
,
Boston
,
1982
).
2.
B.
Buonomo
,
A.
d’Onofrio
, and
D.
Lacitignola
, “
Global stability of an SIR epidemic model with information dependent vaccination
,”
Math. Biosci.
216
,
9
16
(
2008
).
3.
C.
Castillo-Chavez
,
Z.
Feng
, and
W.
Huang
, “On the computation of R0 and its role on global stability,” in Mathematical Approaches for Emerging and Reemerging Infectious Disease An Introduction (Springer, Berlin, 2002), Vol. 125, pp. 229–250.
4.
O.
Diekmann
,
J. A. J.
Metz
, and
J. A. P.
Heesterbeek
, “
On the definition on the computation of the basic reproduction number ratio R0 in models for infectious diseases in heterogeneous population
,”
J. Math. Biol.
28
,
365
382
(
1990
).
5.
P.
Van den Driessche
and
J.
Watmough
, “
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
,”
Math. Biosci.
180
(
1–2
),
29
48
(
2002
).
6.
D.
Fanelli
and
F.
Piazza
, “
Analysis and forecast of COVID-19 spreading in China, Italy and France
,”
Chaos Solitons Fractals
134
,
109761
(
2020
).
7.
D.
Faranda
,
I. P.
Castillo
,
O.
Hulme
,
A.
Jezequel
,
J. S.
Lamb
,
Y.
Sato
, and
E. L.
Thompson
, “
Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation
,”
Chaos
30
(
5
),
051107
(
2020
).
8.
G. R.
Fulford
,
M. G.
Roberts
, and
J. A. P.
Heesterbeek
, “
The meta population dynamics of an infectious disease: Tuberculosis in possums
,”
J. Theor. Biol.
61
,
15
29
(
2002
).
9.
See https://arogya.maharashtra.gov.in for information about COVID-19 data, Government of Maharashtra Public Health Department (accessed 29 June 2020).
10.
J.
Hellewell
,
S.
Abbott
,
A.
Gimma
,
N. T.
Bosse
,
C. I.
Jarvis
,
T. W.
Russell
,
J. D.
Munday
,
A. J.
Kucharski
, and
W. J.
Edmunds
, “
Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts
,”
Lancet Glob. Health
8
,
488
496
(
2020
).
11.
See https://www.worldometers.info/coronavirus for COVID-19 coronavirus pandemic (accessed 29 June 2020).
12.
See https://icmr.nic.in for information about COVID-19 data, Indian Council of Medical Research (ICMR), Government of India (accessed 29 June 2020).
13.
S.
Jana
,
S. K.
Nandi
, and
T. K.
Kar
, “
Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment
,”
Acta Biotheor.
64
,
65
84
(
2016
).
14.
T. K.
Kar
,
S. K.
Nandi
,
S.
Jana
, and
M.
Mandal
, “
Stability and bifurcation analysis of an epidemic model with the effect of media
,”
Chaos Solitons Fractals
120
,
188
199
(
2019
).
15.
M. J.
Keeling
and
P.
Rohani
,
Modelling Infectious Diseases in Humans and Animals
(
Princeton University Press
,
Princeton, NJ
,
2008
).
16.
W. O.
Kermack
and
A. G.
McKendrick
, “
Contributions to the mathematical theory of epidemics-I
,”
Proc. R. Soc.
115A
,
700
721
(
1927
).
17.
A. J.
Kucharski
,
T. W.
Russell
,
C.
Diamond
,
Y.
Liu
,
J.
Edmunds
,
S.
Funk
, and
R. M.
Eggo
, “
Early dynamics of transmission and control of COVID-19: A mathematical modelling study
,”
Lancet Infect. Dis.
20
,
P553
(
2020
).
18.
L.
Li
,
C. H.
Wang
,
S. H.
Wang
,
M. T.
Li
,
L.
Yakob
,
B.
Cazelles
,
Z.
Jin
, and
W. Y.
Zhange
, “
Hemographic fever with renal syndrome in China: Mechanism on two distinct annual peaks and control measures
,”
Int. J. Biomath.
11
,
1850030
(
2018
).
19.
Y.
Liu
,
A. A.
Gayle
,
A.
Wilder-Smith
, and
J.
Rocklöv
, “
The reproductive number of COVID-19 is higher compared to SARS coronavirus
,”
J. Travel Med.
27
,
taaa021
(
2020
).
20.
See https://www.mohfw.gov.in for information about COVID-19 data, Ministry of Health and Welfare, Government of India (accessed 29 June 2020).
21.
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
(
4
),
041102
(
2020
).
22.
K.
Mizumoto
and
G.
Chowell
, “
Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises ship
,”
Infect. Dis. Model.
5
,
264
270
(
2020
).
23.
See https://niti.gov.in for information about COVID-19 data, National Institution for Transforming India (NITI Aayog), Government of India (accessed 29 June 2020).
24.
F.
Ndariou
,
I.
Area
,
J. J.
Nieto
, and
D. F.
Torres
, “
Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan
,”
Chaos Solitons Fractals
135
,
109846
(
2020
).
25.
See https://www.mygov.in/covid-19 for official updates of coronavirus, COVID-19 in India, Government of India (accessed 29 June 2020).
26.
K.
Prem
,
Y.
Liu
,
T. W.
Russell
,
A. J.
Kucharski
,
R. M.
Eggo
, and
N.
Davies
, “
The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study
,”
Lancet Public Health
5
,
E261
(
2020
).
27.
M. H. D. M.
Ribeiro
,
R. G.
Silva
,
V. C.
Mariani
, and
L. S.
Coelho
, “
Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil
,”
Chaos Solitons Fractals
135
,
109853
(
2020
).
28.
C.
Castillo-Chavez
and
B.
Song
, “
Dynamical models of tuberculosis and their applications
,”
Math. Biosci. Eng.
1
(
2
),
361
(
2004
).
29.
R.
Ross
, “
An application of the theory of probabilities to the study of a priori pathometry: Part I
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
92
(
638
),
204
226
(
1916
).
30.
W.
Wang
and
X. Q.
Zhao
, “
An epidemic model in a patchy environment
,”
Math. Biosci.
190
,
97
112
(
2004
).
31.
M. A.
Zegarra
and
J. V.
Hernandez
, “
The role of animal grazing in the spread of Chagas disease
,”
J. Theor. Biol.
457
,
19
28
(
2018
).
32.
Y.
Zhou
,
K.
Yang
,
K.
Zhou
, and
Y.
Liang
, “
Optimal vaccination policies for an SIR model with limited resources
,”
Acta Biotheor.
62
,
171
181
(
2014
).
33.
D. K.
Das
,
S.
Khajanchi
, and
T. K.
Kar
, “
The impact of the media awareness and optimal strategy on the prevalence of tuberculosis
,”
Appl. Math. Comput.
366
,
124732
(
2020
).
34.
X.
Zhang
and
X.
Liu
, “
Backward bifurcation of an epidemic model with saturated treatment
,”
J. Math. Anal. Appl.
348
,
433
443
(
2008
).
35.
M. A.
Acuna-Zegarra
,
M.
Santana-Cibrian
, and
J. X.
Velasco-Hernandez
, “
Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance
,”
Math. Biosci.
325
,
108370
(
2020
).
36.
C. N.
Ngonghala
,
E.
Iboi
,
S.
Eikenberry
,
M.
Scotch
,
C.
Raina
,
M.
Intyre
,
M. H.
Bonds
, and
A. B.
Gumel
, “
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus
,”
Math. Biosci.
325
,
108364
(
2020
).
37.
M.
Mandal
,
S.
Jana
,
S. K.
Nandi
,
A.
Khatua
,
S.
Adak
, and
T. K.
Kar
, “
A model based study on the dynamics of COVID-19: Prediction and control
,”
Chaos Solitons Fractals
136
,
109889
(
2020
).
38.
See http://health.bih.nic.in for information about COVID-19 data, Department of Health, Govt. of Bihar (accessed 29 June 2020).
39.
See http://pbhealth.gov.in for information about COVID-19 data, Department of Health and Family Welfare Punjab (accessed 29 June 2020).
40.
See https://dhs.kerala.gov.in for information about COVID-19 data, Directorate of Health Services, Government of Kerala (accessed 29 June 2020).
41.
See http://dgmhup.gov.in for information about COVID-19 data, Directorate of Medical & Health Services, Government of Uttar Pradesh (accessed 29 June 2020).
42.
See https://gujhealth.gujarat.gov.in for information about COVID-19 data, Health & Family Welfare Department, Government of Gujarat (accessed 29 June 2020).
43.
S.
Khajanchi
and
K.
Sarkar
, “
Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India
,”
Chaos
30
,
071101
(
2020
).
44.
T.
Sardar
,
S. K. S.
Nadim
,
S.
Rana
, and
J.
Chattopadhyay
, “
Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak
,”
Chaos Solitons Fractals
139
,
110078
(
2020
).
45.
S. K. S.
Nadim
,
I.
Ghosh
, and
J.
Chattopadhyay
, “Short-term predictions and prevention strategies for COVID-2019: A model based study,” arXiv:2003.08150 (2020).
46.
A.
Paul
,
S.
Chatterjee
, and
N.
Bairagi
, “Prediction on Covid-19 epidemic for different countries: Focusing on South Asia under various precautionary measures,” medRxiv (2020).
47.
C.
Hou
,
J.
Chen
,
Y.
Zhou
,
L.
Hua
,
J.
Yuan
,
S.
He
,
Y.
Guo
,
S.
Zhang
,
Q.
Jia
,
C.
Zhao
,
J.
Zhang
,
G.
Xu
, and
E.
Jia
, “
The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis
,”
J. Med. Virol.
92
,
841
(
2020
).
48.
S.
He
,
Y.
Peng
, and
K.
Sun
, “
SEIR modeling of the COVID-19 and its dynamics
,”
Nonlinear Dyn.
101
,
1667
(
2020
).
49.
C. A. K.
Kwuimy
,
F.
Nazari
,
X.
Jiao
,
P.
Rohani
, and
C.
Nataraj
, “
Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action
,”
Nonlinear Dyn.
101
,
1545
(
2020
).
You do not currently have access to this content.