We explore the influence of precision of the data and the algorithm for the simulation of chaotic dynamics by neural network techniques. For this purpose, we simulate the Lorenz system with different precisions using three different neural network techniques adapted to time series, namely, reservoir computing [using Echo State Network (ESN)], long short-term memory, and temporal convolutional network, for both short- and long-time predictions, and assess their efficiency and accuracy. Our results show that the ESN network is better at predicting accurately the dynamics of the system, and that in all cases, the precision of the algorithm is more important than the precision of the training data for the accuracy of the predictions. This result gives support to the idea that neural networks can perform time-series predictions in many practical applications for which data are necessarily of limited precision, in line with recent results. It also suggests that for a given set of data, the reliability of the predictions can be significantly improved by using a network with higher precision than the one of the data.

1.
D.
Silver
et al., “
Mastering the game of go with deep neural networks and tree search
,”
Nature
529
,
484
(
2016
).
2.
G.
Hinton
et al., “
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
,”
IEEE Signal Process. Mag.
29
,
82
(
2012
).
3.
Y.
Wu
et al., “Google’s neural machine translation system: Bridging the gap between human and machine translation,” arXiv:1609.08144 (2016).
4.
A.
Lichtenberg
and
M.
Lieberman
,
Regular and Chaotic Dynamics
(
Springer
,
New York
,
1992
).
5.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1993
).
6.
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer
,
New York
,
1990
).
7.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
(
2004
).
8.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
9.
J.
Pathak
,
B. R.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
10.
Z.
Lu
,
B. R.
Hunt
, and
E.
Ott
, “
Attractor reconstruction by machine learning
,”
Chaos
28
,
061104
(
2018
).
11.
M.
Lukosevicius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
(
2009
).
12.
Y.
Tang
,
J.
Kurths
,
W.
Lin
,
E.
Ott
, and
L.
Kocarev
, “
Introduction to focus issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics
,”
Chaos
30
,
063151
(
2020
).
13.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
2004
).
14.
F. A.
Gers
,
D.
Eck
, and
J.
Schmidhuber
, “Applying LSTM to time series predictable through time-window approaches,” in Neural Nets WIRN Vietri-01: Proceedings of the 12th Italian Workshop on Neural Nets (Springer, London, 2012), p. 193.
15.
P. R.
Vlachas
,
W.
Byeon
,
Z. Y.
Wan
,
T. P.
Sapsis
, and
P.
Koumoutsakos
, “
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
,”
Proc. R. Soc. A
474
,
20170844
(
2018
).
16.
P. G.
Breen
,
C. N.
Foley
,
T.
Boekholt
, and
S. P.
Zwart
, “
Newton versus the machine: Solving the chaotic three-body problem using deep neural networks
,”
Mon. Not. R. Astron. Soc.
494
,
2465
(
2020
).
17.
P. R.
Vlachas
,
J.
Pathak
,
B. R.
Hunt
,
T. P.
Sapsis
,
M.
Girvan
,
E.
Ott
, and
P.
Koumoutsakos
, “
Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics
,”
Neural Netw.
126
,
191
(
2020
).
18.
A.
Chattopadhyay
,
P.
Hassanzadeh
, and
D.
Subramanian
, “
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM
,”
Nonlinear Process. Geophys.
27
,
373
(
2020
).
19.
D. L.
Shepelyansky
, “
Some statistical properties of simple classically stochastic quantum systems
,”
Physica D
8
,
208
(
1983
).
20.
G.
Casati
,
B. V.
Chirikov
,
I.
Guarneri
, and
D. L.
Shepelyansky
, “
Dynamical stability of quantum ‘chaotic’ motion in hydrogen atom
,”
Phys. Rev. Lett.
56
,
2437
(
1986
).
21.
K.
Greff
,
R. K.
Srivastava
,
J.
Koutnik
,
B. R.
Steunebrink
, and
J.
Schmidhuber
, “
LSTM: A search space odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
28
,
10
(
2017
).
22.
S.
Bai
,
J. Z.
Kolter
, and
V.
Koltun
, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv:1803.01271 (2018).
23.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
(
1963
).
24.
A.
van den Oord
,
S.
Dieleman
,
H.
Zen
,
K.
Simonyan
,
O.
Vinyals
,
A.
Graves
,
N.
Kalchbrenner
,
A.
Senior
, and
K.
Kavukcuoglu
, “WaveNet: A generative model for raw audio,” arXiv:1609.03499 (2016).
25.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
(
1976
).
You do not currently have access to this content.