We consider a self-oscillator whose excitation parameter is varied. The frequency of the variation is much smaller than the natural frequency of the oscillator so that oscillations in the system are periodically excited and decayed. Also, a time delay is added such that when the oscillations start to grow at a new excitation stage, they are influenced via the delay line by the oscillations at the penultimate excitation stage. Due to nonlinearity, the seeding from the past arrives with a doubled phase so that the oscillation phase changes from stage to stage according to the chaotic Bernoulli-type map. As a result, the system operates as two coupled hyperbolic chaotic subsystems. Varying the relation between the delay time and the excitation period, we found a coupling strength between these subsystems as well as intensity of the phase doubling mechanism responsible for the hyperbolicity. Due to this, a transition from non-hyperbolic to hyperbolic hyperchaos occurs. The following steps of the transition scenario are revealed and analyzed: (a) an intermittency as an alternation of long staying near a fixed point at the origin and short chaotic bursts; (b) chaotic oscillations with frequent visits to the fixed point; (c) plain hyperchaos without hyperbolicity after termination visiting the fixed point; and (d) transformation of hyperchaos to the hyperbolic form.

1.
T.
Kapitaniak
and
L. O.
Chua
, “
Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits
,”
Int. J. Bifurcation Chaos
4
,
477
482
(
1994
).
2.
O.
Rössler
, “
An equation for hyperchaos
,”
Phys. Lett. A
71
,
155
157
(
1979
).
3.
N. V.
Stankevich
,
A.
Dvorak
,
V.
Astakhov
,
P.
Jaros
,
M.
Kapitaniak
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Chaos and hyperchaos in coupled antiphase driven Toda oscillators
,”
Regul. Chaotic Dyn.
23
,
120
126
(
2018
).
4.
I. R.
Garashchuk
,
D. I.
Sinelshchikov
,
A. O.
Kazakov
, and
N. A.
Kudryashov
, “
Hyperchaos and multistability in the model of two interacting microbubble contrast agents
,”
Chaos
29
,
063131
(
2019
).
5.
N.
Stankevich
,
A.
Kuznetsov
,
E.
Popova
, and
E.
Seleznev
, “
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
,”
Nonlinear Dyn.
97
,
2355
2370
(
2019
).
6.
S.
Nikolov
and
S.
Clodong
, “
Hyperchaos-chaos-hyperchaos transition in modified Rössler systems
,”
Chaos Solitons Fractals
28
,
252
263
(
2006
).
7.
L.
Kocarev
and
U.
Parlitz
, “
General approach for chaotic synchronization with applications to communication
,”
Phys. Rev. Lett.
74
,
5028
5031
(
1995
).
8.
J. H.
Peng
,
E. J.
Ding
,
M.
Ding
, and
W.
Yang
, “
Synchronizing hyperchaos with a scalar transmitted signal
,”
Phys. Rev. Lett.
76
,
904
907
(
1996
).
9.
L.
Yaowen
,
G.
Guangming
,
Z.
Hong
,
W.
Yinghai
, and
G.
Liang
, “
Synchronization of hyperchaotic harmonics in time-delay systems and its application to secure communication
,”
Phys. Rev. E
62
,
7898
7904
(
2000
).
10.
J.
Wang
,
W.
Yu
,
J.
Wang
,
Y.
Zhao
,
J.
Zhang
, and
D.
Jiang
, “
A new six-dimensional hyperchaotic system and its secure communication circuit implementation
,”
Int. J. Circuit Theor. Appl.
47
,
702
717
(
2019
).
11.
F.
Sun
,
S.
Liu
,
Z.
Li
, and
Z.
, “
A novel image encryption scheme based on spatial chaos map
,”
Chaos Solitons Fractals
38
,
631
640
(
2008
).
12.
C.
Zhu
, “
A novel image encryption scheme based on improved hyperchaotic sequences
,”
Opt. Commun.
285
,
29
37
(
2012
).
13.
S.
Li
and
X.
Zheng
, “Cryptanalysis of a chaotic image encryption method,” in 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353) (IEEE, 2002), Vol. 2, p. II.
14.
R.
Rhouma
and
S.
Belghith
, “
Cryptanalysis of a new image encryption algorithm based on hyper-chaos
,”
Phys. Lett. A
372
,
5973
5978
(
2008
).
15.
S.
Torkamani
,
E. A.
Butcher
,
M. D.
Todd
, and
G.
Park
, “
Hyperchaotic probe for damage identification using nonlinear prediction error
,”
Mech. Syst. Signal. Process.
29
,
457
473
(
2012
).
16.
S. P.
Kuznetsov
,
Hyperbolic Chaos: A Physicist’s View
(
Springer-Verlag
,
Berlin
,
2012
), p.
336
.
17.
S.
Smale
, “
Differentiable dynamical systems
,”
Bull. Am. Math. Soc.
73
,
747
817
(
1967
).
18.
Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia of Mathematical Sciences Vol. 9, edited by D. V. Anosov (Springer, Berlin, 1995).
19.
A.
Katok
and
B.
Hasselblatt
, Introduction to the Modern Theory of Dynamical Systems, 1st ed., Encyclopedia of Mathematics and its Applications Vol. 54 (Cambridge University Press, 1995), p. 802.
20.
A. A.
Andronov
and
L. S.
Pontryagin
, “
Structurally stable systems
,”
Dokl. Akad. Nauk SSSR
14
,
247
250
.
21.
A. A.
Andronov
,
S. E.
Khaikin
, and
A. A.
Vitt
,
Theory of Oscillators
(
Pergamon Press
,
1966
).
22.
S. P.
Kuznetsov
, “
Dynamical chaos and uniformly hyperbolic attractors: From mathematics to physics
,”
Phys. Usp.
54
,
119
144
(
2011
).
23.
P. V.
Kuptsov
and
S. P.
Kuznetsov
, “
Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor
,”
Phys. Rev. E
80
,
016205
(
2009
).
24.
P. V.
Kuptsov
, “
Violation of hyperbolicity via unstable dimension variability in a chain with local hyperbolic chaotic attractors
,”
J. Phys. A Math. Theor.
46
,
254016
(
2013
).
25.
E. J.
Kostelich
,
I.
Kan
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Unstable dimension variability: A source of nonhyperbolicity in chaotic systems
,”
Physica D
109
,
81
90
(
1997
), Proceedings of the Workshop on Physics and Dynamics between Chaos, Order, and Noise.
26.
R. F.
Pereira
,
S. E.
de S. Pinto
,
R. L.
Viana
,
S. R.
Lopes
, and
C.
Grebogi
, “
Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation
,”
Chaos
17
,
023131
(
2007
).
27.
T.
Kapitaniak
,
Y.
Maistrenko
, and
S.
Popovych
, “
Chaos-hyperchaos transition
,”
Phys. Rev. E
62
,
1972
1976
(
2000
).
28.
S.
Yanchuk
and
T.
Kapitaniak
, “
Chaos-hyperchaos transition in coupled Rössler systems
,”
Phys. Lett. A
290
,
139
144
(
2001
).
29.
S.
Yanchuk
and
T.
Kapitaniak
, “
Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
,”
Phys. Rev. E
64
,
056235
(
2001
).
30.
Delay Systems: From Theory to Numerics and Applications, edited by T. Vyhlídal, J. F. Lafay, and R. Sipahi (Springer Science & Business Media, 2013), Vol. 1.
31.
S. P.
Kuznetsov
and
V. I.
Ponomarenko
, “
Realization of a strange attractor of the Smale-Williams type in a radiotechnical delay-feedback oscillator
,”
Tech. Phys. Lett.
34
,
771
773
(
2008
).
32.
S. P.
Kuznetsov
and
A.
Pikovsky
, “Attractor of Smale-Williams type in an autonomous time-delay system,” arXiv:1011.5972 (2010).
33.
S. P.
Kuznetsov
and
A.
Pikovsky
, “
Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks
,”
Europhys. Lett.
84
,
10013
(
2008
).
34.
S. V.
Baranov
,
S. P.
Kuznetsov
, and
V. I.
Ponomarenko
, “
Chaos in the phase dynamics of Q-switched van der Pol oscillator with additional delayed-feedback loop
,”
Izvestiya VUZ. Appl. Nonlinear Dyn.
18
,
12
23
(
2010
) (in Russian).
35.
A. S.
Kuznetsov
and
S. P.
Kuznetsov
, “
Parametric generation of robust chaos with time-delayed feedback and modulated pump source
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
728
734
(
2013
).
36.
D. S.
Arzhanukhina
and
S. P.
Kuznetsov
, “
Robust chaos in autonomous time-delay system
,”
Izvestiya VUZ. Appl. Nonlinear Dyn.
22
,
36
49
(
2014
); arxiv:1404.4221 (in Russian).
37.
P. V.
Kuptsov
and
S. P.
Kuznetsov
, “
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems
,”
Phys. Rev. E
94
,
010201(R)
(
2016
).
38.
P. V.
Kuptsov
and
S. P.
Kuznetsov
, “
Numerical test for hyperbolicity in chaotic systems with multiple time delays
,”
Commun. Nonlinear Sci. Numer. Simul.
56
,
227
239
(
2018
).
39.
S. V.
Baranov
and
S. P.
Kuznetsov
, “
Hyperchaos in a system with delayed feedback loop based on Q-switched van der Pol oscillator
,”
Izvestiya VUZ. Appl. Nonlinear Dyn.
18
,
111
120
(
2010
) (in Russian).
40.
S. P.
Kuznetsov
, “
Example of a physical system with a hyperbolic attractor of the Smale-Williams type
,”
Phys. Rev. Lett.
95
,
144101
(
2005
).
41.
F.
Ginelli
,
P.
Poggi
,
A.
Turchi
,
H.
Chaté
,
R.
Livi
, and
A.
Politi
, “
Characterizing dynamics with covariant Lyapunov vectors
,”
Phys. Rev. Lett.
99
,
130601
(
2007
).
42.
C. L.
Wolfe
and
R. M.
Samelson
, “
An efficient method for recovering Lyapunov vectors from singular vectors
,”
Tellus A Dyn. Meteorol. Oceanogr.
59
,
355
366
(
2007
).
43.
P. V.
Kuptsov
and
U.
Parlitz
, “
Theory and computation of covariant Lyapunov vectors
,”
J. Nonlinear. Sci.
22
,
727
762
(
2012
).
44.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
), p.
295
.
45.
J. L.
Kaplan
and
J. A.
Yorke
, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximations of Fixed Points, Lecture Notes in Mathematics Vol. 730, edited by H.-O. Peitgen and H.-O. Walter (Springer, Berlin, 1979), p. 204.
46.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
47.
P. V.
Kuptsov
and
S. P.
Kuznetsov
, “
Lyapunov analysis of strange pseudohyperbolic attractors: Angles between tangent subspaces, local volume expansion and contraction
,”
Regul. Chaotic Dyn.
23
,
908
932
(
2018
).
48.
P. V.
Kuptsov
and
A.
Politi
, “
Large-deviation approach to space-time chaos
,”
Phys. Rev. Lett.
107
,
114101
(
2011
).
49.
P. V.
Kuptsov
, “
Fast numerical test of hyperbolic chaos
,”
Phys. Rev. E
85
,
015203
(
2012
).
50.
R. L.
Davidchack
and
Y.-C.
Lai
, “
Efficient algorithm for detecting unstable periodic orbits in chaotic systems
,”
Phys. Rev. E
60
,
6172
6175
(
1999
).
51.
J.
Crofts
and
R.
Davidchack
, “
Efficient detection of periodic orbits in chaotic systems by stabilizing transformations
,”
SIAM J. Sci. Comput.
28
,
1275
1288
(
2006
).
52.
J. J.
Crofts
and
R. L.
Davidchack
, “
On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows
,”
Chaos
19
,
033138
(
2009
).
53.
J.
Alstott
,
E.
Bullmore
, and
D.
Plenz
, “
Powerlaw: A python package for analysis of heavy-tailed distributions
,”
PLoS ONE
9
,
1
11
(
2014
).
54.
H.
Fujisaka
, “
Statistical dynamics generated by fluctuations of local Lyapunov exponents
,”
Prog. Theor. Phys.
70
,
1264
1275
(
1983
).
You do not currently have access to this content.