In this work, the multifractal properties of wind speed and solar radiation are studied in a small region in which a wide variety of micro-climates are concentrated. To achieve this, two years of hourly data are analyzed in Guadeloupe archipelago. The four selected stations for wind speed were chosen according to trade winds direction, while solar radiation is recorded at a representative location at the center of the island. First, the results of the multifractal detrended fluctuation analysis (MF-DFA) showed the multifractal and persistent behaviors of wind speed at all locations. Due to the continental effect that increases along the transect, the Hurst exponent (H) values decrease from east to west. In addition, the MF-DFA clearly highlighted the presence of a nocturnal radiative layer that weakens wind speed in the surface layer. The multifractality degree [Δh(q)] values confirm the peculiarity of wind speed regimes at the center of the island. Thereafter, the MF-DFA results of solar radiation exhibited its multifractal and persistent behavior. Due to the solar radiation planetary scale, its Δh(q) is lower than those obtained for wind speed, which strongly depends on synoptic and local scales. The source of multifractality of wind speed and solar radiation is due to correlations of small and large fluctuations. Finally, the results of the multifractal detrended cross-correlation analysis between wind speed and solar radiation pointed out that the multifractal cross-correlation degree [Δhxy(q)] is identical for each site, which is not the case for Hurst exponent values.

1
André
,
M.
,
Dabo-Niang
,
S.
,
Soubdhan
,
T.
, and
Ould-Baba
,
H.
, “
Predictive spatio-temporal model for spatially sparse global solar radiation data
,”
Energy
111
,
599
608
(
2016
).
2
André
,
M.
,
Perez
,
R.
,
Soubdhan
,
T.
,
Schlemmer
,
J.
,
Calif
,
R.
, and
Monjoly
,
S.
, “
Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context
,”
Sol. Energy
177
,
703
712
(
2019
).
3
dos Anjos
,
P. S.
,
da Silva
,
A. S. A.
,
Stošić
,
B.
, and
Stošić
,
T.
, “
Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil
,”
Physica A
424
,
90
96
(
2015
).
4
Bertin
,
A.
and
Frangi
,
J. P.
, “
Contribution to the study of the wind and solar radiation over Guadeloupe
,”
Energy Convers. Manage.
75
,
593
602
(
2013
).
5
Brévignon
,
C.
,
Atlas Climatique: L’environnement Atmosphérique de la Guadeloupe, de Saint-Barthélémy et de Saint-Martin
(Climatic Atlas: Atmospheric Environment in Guadeloupe, Saint-Barthélémy and Saint Martin) (
Météo France, Service Régionale de Guadeloupe
,
2003
).
6
Calif
,
R.
and
Schmitt
,
F. G.
, “
Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm
,”
Nonlinear Process. Geophys.
21
,
379
392
(
2014
).
7
Calif
,
R.
,
Schmitt
,
F. G.
,
Huang
,
Y.
, and
Soubdhan
,
T.
, “
Intermittency study of high frequency global solar radiation sequences under a tropical climate
,”
Sol. Energy
98
,
349
365
(
2013
).
8
Cleveland
,
R. B.
,
Cleveland
,
W. S.
,
McRae
,
J. E.
, and
Terpenning
,
I.
, “
STL: A seasonal-trend decomposition
,”
J. Off. Stat.
6
(
1
),
3
73
(
1990
).
9
Dambreville
,
R.
,
Blanc
,
P.
,
Chanussot
,
J.
, and
Boldo
,
D.
, “
Very short term forecasting of the global horizontal irradiance using a spatio-temporal autoregressive model
,”
Renew. Energy
72
,
291
300
(
2014
).
10
Emeis
,
S.
and
Schäfer
,
K.
, “
Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities
,”
Boundary Layer Meteorol.
121
(
2
),
377
385
(
2006
).
11
Feder
,
J.
,
Fractals
(
Plenum Press
,
New York
,
1988
).
12
Feng
,
T.
,
Fu
,
Z.
,
Deng
,
X.
, and
Mao
,
J.
, “
A brief description to different multi-fractal behaviors of daily wind speed records over China
,”
Phys. Lett. A
373
(
45
),
4134
4141
(
2009
).
13
Garcia-Marin
,
A. P.
,
Estévez
,
J.
,
Jiménez-Hornero
,
F. J.
, and
Ayuso-Muñoz
,
J. L.
, “
Multifractal analysis of validated wind speed time series
,”
Chaos
23
(
1
),
013133
(
2013
).
14
Gleisner
,
H.
and
Thejll
,
P.
, “
Patterns of tropospheric response to solar variability
,”
Geophys. Res. Lett.
30
(
13
),
44
, (
2003
).
15
Govindan
,
R. B.
and
Kantz
,
H.
, “
Long-term correlations and multifractality in surface wind speed
,”
Europhys. Lett.
68
(
2
),
184
(
2004
).
16
Harrouni
,
S.
and
Guessoum
,
A.
, “
Using fractal dimension to quantify long-range persistence in global solar radiation
,”
Chaos Solitons Fractals
41
(
3
),
1520
1530
(
2009
).
17
Holzworth
,
G. C.
,
Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States
(
EPA Publications
,
1972
), p.
132
.
18
Ihlen
,
E. A. F.
, “
Introduction to multifractal detrended fluctuation analysis in Matlab
,”
Front. Physiol.
3
,
141
(
2012
).
19
Jiménez-Hornero
,
F. J.
,
Pavón-Domínguez
,
P.
,
Gutiérrez de Ravé
,
E.
, and
Ariza-Villaverde
,
A. B.
, “
Joint multifractal description of the relationship between wind patterns and land surface air temperature
,”
Atmos. Res.
99
(
3-4
),
366
376
(
2011
).
20
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-Bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
, “
Multifractal detrended fluctuation analysis of nonstationary time series
,”
Physica A
316
(
1-4
),
87
114
(
2002
).
21
Kasten
,
F.
, “
A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor
,”
Meteorol. Rundsch.
33
,
124
127
(
1980
).
22
Kavasseri
,
R. G.
and
Nagarajan
,
R.
, “
A multifractal description of wind speed records
,”
Chaos Solitons Fractals
24
(
1
),
165
173
(
2005
).
23
Laib
,
M.
,
Golay
,
J.
,
Telesca
,
L.
, and
Kanevski
,
M.
, “
Multifractal analysis of the time series of daily means of wind speed in complex regions
,”
Chaos Solitons Fractals
109
,
118
127
(
2018a
).
24
Laib
,
M.
,
Telesca
,
L.
, and
Kanevski
,
M.
, “
Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network
,”
Chaos
28
(
3
),
033108
(
2018b
).
25
Li
,
E.
,
Mu
,
X.
,
Zhao
,
G.
, and
Gao
,
P.
, “
Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin, China
,”
Water
7
(
4
),
1670
1686
(
2015
).
26
Madanchi
,
A.
,
Absalan
,
M.
,
Lohmann
,
G.
,
Anvari
,
M.
, and
Tabar
,
M. R. R.
, “
Strong short-term non-linearity of solar irradiance fluctuations
,”
Sol. Energy
144
,
1
9
(
2017
).
27
Malek
,
E.
,
Davis
,
T.
,
Martin
,
R. S.
, and
Silva
,
P. J.
, “
Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA
,”
Atmos. Res.
79
(
2
),
108
122
(
2006
).
28
Meneveau
,
C.
,
Sreenivasan
,
K. R.
,
Kailasnath
,
P.
, and
Fan
,
M. S.
, “
Joint multifractal measures: Theory and applications to turbulence
,”
Phys. Rev. A
41
(
2
),
894
(
1990
).
29
Monjoly
,
S.
,
André
,
M.
,
Calif
,
R.
, and
Soubdhan
,
T.
, “
Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach
,”
Energy
119
,
288
298
(
2017
).
30
Movahed
,
M. S.
,
Jafari
,
G.
,
Ghasemi
,
F.
,
Rahvar
,
S.
, and
Tabar
,
M. R. R.
, “
Multifractal detrended fluctuation analysis of sunspot time series
,”
J. Stat. Mech.: Theory Exp.
2006
(
02
),
P02003
.
31
Mursula
,
K.
and
Zieger
,
B.
, “
The 13.5-day periodicity in the sun, solar wind, and geomagnetic activity: The last three solar cycles
,”
J. Geophys. Res.: Space Phys.
101
(
A12
),
27077
27090
, (
1996
).
32
Omran
,
M. A.
, “
Analysis of solar radiation over Egypt
,”
Theor. Appl. Climatol.
67
(
3-4
),
225
240
(
2000
).
33
Pavón-Domínguez
,
P.
,
Jiménez-Hornero
,
F.
, and
Gutiérrez de Ravé
,
E.
, “
Joint multifractal analysis of the influence of temperature and nitrogen dioxide on tropospheric ozone
,”
Stoch. Environ. Res. Risk Assess.
29
(
7
),
1881
1889
(
2015
).
34
Pedron
,
I. T.
, “
Correlation and multifractality in climatological time series
,”
J. Phys. Conf. Ser.
246
,
012034
(
2010
).
35
Peng
,
C. K.
,
Buldyrev
,
S. V.
,
Havlin
,
S.
,
Simons
,
M.
,
Stanley
,
H. E.
, and
Goldberger
,
A. L.
, “
Mosaic organization of DNA nucleotides
,”
Phys. Rev. E
49
(
2
),
1685
(
1994
).
36
Plocoste
,
T.
,
Calif
,
R.
, and
Jacoby-Koaly
,
S.
, “
Multi-scale time dependent correlation between synchronous measurements of ground-level ozone and meteorological parameters in the Caribbean basin
,”
Atmos. Environ.
211
,
234
246
(
2019
).
37
Plocoste
,
T.
,
Dorville
,
J. F.
,
Monjoly
,
S.
,
Jacoby-Koaly
,
S.
, and
André
,
M.
, “
Assessment of nitrogen oxides and ground-level ozone behavior in a dense air quality station network: Case study in the Lesser Antilles arc
,”
J. Air Waste Manag. Assoc.
68
(
12
),
1278
1300
(
2018
).
38
Plocoste
,
T.
,
Jacoby-Koaly
,
S.
,
Molinié
,
J.
, and
Bade
,
F.
, “
Surface inversion characteristics in the nocturnal boundary layer of Guadeloupe and its impact on air quality
,”
WIT Trans. Ecol. Environ.
198
,
265
274
(
2015
).
39
Plocoste
,
T.
,
Jacoby-Koaly
,
S.
,
Molinié
,
J.
, and
Petit
,
R. H.
, “
Evidence of the effect of an urban heat island on air quality near a landfill
,”
Urban Clim.
10
,
745
757
(
2014
).
40
Plocoste
,
T.
,
Jacoby-Koaly
,
S.
,
Petit
,
R. H.
,
Molinié
,
J.
, and
Roussas
,
A.
, “
In situ quantification and tracking of volatile organic compounds with a portable mass spectrometer in tropical waste and urban sites
,”
Environ. Technol.
38
(
18
),
2280
2294
(
2017
).
41
Podobnik
,
B.
and
Stanley
,
H. E.
, “
Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series
,”
Phys. Rev. Lett.
100
(
8
),
084102
(
2008
).
42
Rodríguez-Gómez
,
B. A.
,
Meizoso-López
,
M. D. C.
,
Mirás-Avalos
,
J. M.
,
García-Tomillo
,
A.
, and
Paz-González
,
A.
, “
Assessment of solar irradiation models in A Coruña by multifractal analysis
,”
Vadose Zone J.
12
(
3
),
1
10
(
2013
).
43
Shadkhoo
,
S.
and
Jafari
,
G. R.
, “
Multifractal detrended cross-correlation analysis of temporal and spatial seismic data
,”
Eur. Phys. J. B
72
(
4
),
679
683
(
2009
).
44
Sharan
,
M.
,
Yadav
,
A. K.
,
Singh
,
M.
,
Agarwal
,
P.
, and
Nigam
,
S.
, “
A mathematical model for the dispersion of air pollutants in low wind conditions
,”
Atmos. Environ.
30
(
8
),
1209
1220
(
1996
).
45
Stathopoulos
,
V. K.
and
Matsoukas
,
C.
, “
Long-term memory and multifractality of downwelling longwave radiation flux at the Earth’s surface
,”
Clim. Dyn.
52
(
9-10
),
5723
5738
(
2019
).
46
Stull
,
R. B.
,
An Introduction to Boundary Layer Meteorology
(
Springer Science & Business Media
,
2012
), Vol. 13.
47
Šúri
,
M.
and
Hofierka
,
J.
, “
A new GIS-based solar radiation model and its application to photovoltaic assessments
,”
Trans. GIS
8
(
2
),
175
190
(
2004
).
48
Telesca
,
L.
and
Lovallo
,
M.
, “
Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane
,”
J. Stat. Mech.: Theory Exp.
2011
(
07
),
P07001
.
49
Telesca
,
L.
,
Lovallo
,
M.
, and
Kanevski
,
M.
, “
Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions
,”
Appl. Energy
162
,
1052
1061
(
2016
).
50
Vandewalle
,
N.
and
Ausloos
,
M.
, “
Crossing of two mobile averages: A method for measuring the roughness exponent
,”
Phys. Rev. E
58
(
5
),
6832
(
1998
).
51
Varotsos
,
C. A.
,
Lovejoy
,
S.
,
Sarlis
,
N. V.
,
Tzanis
,
C. G.
, and
Efstathiou
,
M. N.
, “
On the scaling of the solar incident flux
,”
Atmos. Chem. Phys.
15
(
13
),
7301
7306
(
2015
).
52
Vindel
,
J. M.
and
Polo
,
J.
, “
Intermittency and variability of daily solar irradiation
,”
Atmos. Res.
143
,
313
327
(
2014
).
53
Weerasinghe
,
R. M.
,
Pannila
,
A. S.
,
Jayananda
,
M. K.
, and
Sonnadara
,
D. U. J.
, “
Multifractal behavior of wind speed and wind direction
,”
Fractals
24
(
01
),
1650003
(
2016
).
54
Yordanov
,
G. H.
,
Midtgård
,
O. M.
,
Saetre
,
T. O.
,
Nielsen
,
H. K.
, and
Norum
,
L. E.
, “Overirradiance (cloud enhancement) events at high latitudes,” in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) Part 2 (IEEE, 2012), pp. 1–7.
55
Zeng
,
M.
,
Zhang
,
X. N.
,
Li
,
J. H.
, and
Meng
,
Q. H.
, “
The scaling properties of high-frequency wind speed records based on multiscale multifractal analysis
,”
Acta Phys. Pol. B
47
(
9
),
2205
2224
(
2016
).
56
Zhang
,
Q.
,
Xu
,
C. Y.
,
Chen
,
Y. D.
, and
Yu
,
Z.
, “
Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China
,”
Hydrol. Process.: Int. J.
22
(
26
),
4997
5003
(
2008
).
57
Zhang
,
X.
,
Zeng
,
M.
, and
Meng
,
Q.
, “
Asymmetric multiscale multifractal analysis of wind speed signals
,”
Int. J. Mod. Phys. C
28
(
11
),
1750137
(
2017
).
58
Zhang
,
X.
,
Zeng
,
M.
, and
Meng
,
Q.
, “
Multivariate multifractal detrended fluctuation analysis of 3D wind field signals
,”
Physica A
490
,
513
523
(
2018
).
59
Zhou
,
W. X.
, “
Multifractal detrended cross-correlation analysis for two nonstationary signals
,”
Phys. Rev. E
77
(
6
),
066211
(
2008
).
60
Zhou
,
W. X.
, “
The components of empirical multifractality in financial returns
,”
Europhys. Lett.
88
(
2
),
28004
(
2009
).
You do not currently have access to this content.