Epilepsy is one of the most common neurological conditions affecting over 65 million people worldwide. Over one third of people with epilepsy are considered refractory: they do not respond to drug treatments. For this significant cohort of people, surgery is a potentially transformative treatment. However, only a small minority of people with refractory epilepsy are considered suitable for surgery, and long-term seizure freedom is only achieved in half the cases. Recently, several computational approaches have been proposed to support presurgical planning. Typically, these approaches use a dynamic network model to explore the potential impact of surgical resection in silico. The network component of the model is informed by clinical imaging data and is considered static thereafter. This assumption critically overlooks the plasticity of the brain and, therefore, how continued evolution of the brain network post-surgery may impact upon the success of a resection in the longer term. In this work, we use a simplified dynamic network model, which describes transitions to seizures, to systematically explore how the network structure influences seizure propensity, both before and after virtual resections. We illustrate key results in small networks, before extending our findings to larger networks. We demonstrate how the evolution of brain networks post resection can result in a return to increased seizure propensity. Our results effectively determine the robustness of a given resection to possible network reconfigurations and so provide a potential strategy for optimizing long-term seizure freedom.

1.
WHO, Epilepsy
(WHO, 2017).
2.
P. N.
Banerjee
,
D.
Filippi
, and
W.
Allen Hauser
, “
The descriptive epidemiology of epilepsy—A review
,”
Epilepsy Res.
85
(
1
),
31
45
(
2009
).
3.
P.
Kwan
and
M. J.
Brodie
, “
Early identification of refractory epilepsy
,”
N. Engl. J. Med.
342
(
5
),
314
319
(
2000
).
4.
R.
Fisher
,
V.
Salanova
,
T.
Witt
,
R.
Worth
,
T.
Henry
,
R.
Gross
,
K.
Oommen
,
I.
Osorio
,
J.
Nazzaro
,
D.
Labar
,
M.
Kaplitt
,
M.
Sperling
,
E.
Sandok
,
J.
Neal
,
A.
Handforth
,
J.
Stern
,
A.
DeSalles
,
S.
Chung
,
A.
Shetter
 et al, “
Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy
,”
Epilepsia
51
(
5
),
899
908
(
2010
).
5.
J. S.
Duncan
,
G. P.
Winston
,
M. J.
Koepp
, and
S.
Ourselin
, “
Brain imaging in the assessment for epilepsy surgery
,”
Lancet Neurol.
15
,
420
433
(
2016
).
6.
J.
De Tisi
,
G. S.
Bell
,
J. L.
Peacock
,
A. W.
McEvoy
,
W. F.
Harkness
,
J. W.
Sander
, and
J. S.
Duncan
, “
The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: A cohort study
,”
Lancet
378
,
1388
1395
(
2011
).
7.
M.
Mohan
,
S.
Keller
,
A.
Nicolson
,
S.
Biswas
,
D.
Smith
,
J. O.
Farah
,
P.
Eldridge
, and
U.
Wieshmann
, “
The long-term outcomes of epilepsy surgery
,”
PLoS One
13
(
5
),
e0196274
(
2018
).
8.
S. R.
Sheikh
,
M. W.
Kattan
,
M.
Steinmetz
,
M. E.
Singer
,
B. L.
Udeh
, and
L.
Jehi
, “
Cost effectiveness of surgery for drug resistant temporal lobe epilepsy in the US
,”
Neurology
95
(
10
),
e1404
e1416
(
2020
).
9.
J.
Engel
, “
Surgery for seizures
,”
N. Engl. J. Med.
334
(
10
),
647
652
(
1996
).
10.
J. J.
Engel
, “
The current place of epilepsy surgery
,”
Curr. Opin. Neurol.
31
(
2
),
192
197
(
2018
).
11.
M. A.
Kramer
and
S. S.
Cash
, “
Epilepsy as a disorder of cortical network organization
,”
Neuroscientist
18
,
360
372
(
2012
).
12.
M. P.
Richardson
, “
Large scale brain models of epilepsy: Dynamics meets connectomics
,”
J. Neurol. Neurosurg. Psychiatry
83
,
1238
1248
(
2012
).
13.
E.
Van Diessen
,
S. J. H.
Diederen
,
K. P. J.
Braun
,
F. E.
Jansen
, and
C. J.
Stam
, “
Functional and structural brain networks in epilepsy: What have we learned?
,”
Epilepsia
54
(
11
),
1855
1865
(
2013
).
14.
C.
Geier
and
K.
Lehnertz
, “
Long-term variability of importance of brain regions in evolving epileptic brain networks
,”
Chaos
27
,
043112
(
2017
).
15.
Y. L.
Hegner
,
J.
Marquetand
,
A.
Elshahabi
,
S.
Klamer
,
H.
Lerche
,
C.
Braun
, and
N. K.
Focke
, “
Increased functional MEG connectivity as a hallmark of MRI-negative focal and generalized epilepsy
,”
Brain Topogr.
31
,
863
874
(
2018
).
16.
P.
van Mierlo
,
Y.
Höller
,
N. K.
Focke
, and
S.
Vulliemoz
, “
Network perspectives on epilepsy using EEG/MEG source connectivity
,”
Front. Neurol.
10
,
721
(
2019
).
17.
R. S.
Fisher
,
J. H.
Cross
,
J. A.
French
,
N.
Higurashi
,
E.
Hirsch
,
F. E.
Jansen
,
L.
Lagae
,
S. L.
Moshé
,
J.
Peltola
,
E.
Roulet Perez
,
I. E.
Scheffer
, and
S. M.
Zuberi
, “
Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology
,”
Epilepsia
58
(
4
),
522
530
(
2017
).
18.
C. J.
Stam
, “
Modern network science of neurological disorders
,”
Nat. Rev. Neurosci.
15
,
683
695
(
2014
).
19.
W.
Woldman
and
J. R.
Terry
, “
Multilevel computational modelling in epilepsy: Classical studies and recent advances
,” in
Validating Neuro-Computational Models of Neurological and Psychiatric Disorders
, edited by
B. S.
Bhattacharya
and
F. N.
Chowdhury
(
Springer
,
2015
), pp.
161
188
.
20.
J. R.
Terry
,
O.
Benjamin
, and
M. P.
Richardson
, “
Seizure generation: The role of nodes and networks
,”
Epilepsia
53
,
166
169
(
2012
).
21.
S. N.
Kalitzin
,
D. N.
Velis
,
L.
da Silva
, and
F.
H
, “
Stimulation-based anticipation and control of state transitions in the epileptic brain
,”
Epilepsy Behav.
17
(
3
),
310
323
(
2010
).
22.
O.
Benjamin
,
T. H.
Fitzgerald
,
P.
Ashwin
,
K.
Tsaneva-Atanasova
,
F.
Chowdhury
,
M. P.
Richardson
, and
J. R.
Terry
, “
A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy
,”
J. Math. Neurosci.
2
,
1
(
2012
).
23.
J.
Milton
and
P.
Jung
,
Epilepsy as a Dynamic Disease
(
Springer
,
Berlin
,
2003
).
24.
M. F. D.
Moraes
,
D.
de Castro Medeiros
,
F. A. G.
Mourao
,
S. A. V.
Cancado
, and
V. R.
Cota
, “
Epilepsy as a dynamical system, a most needed paradigm shift in epileptology
,”
Epilepsy Behav.
(
published online
) (
2019
).
25.
F.
Hutchings
,
C. E.
Han
,
S. S.
Keller
,
B.
Weber
,
P. N.
Taylor
, and
M.
Kaiser
, “
Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations
,”
PLoS Comput. Biol.
11
(
12
),
e1004642
(
2015
).
26.
M.
Goodfellow
,
C.
Rummel
,
E.
Abela
,
M. P.
Richardson
,
K.
Schindler
, and
J. R.
Terry
, “
Estimation of brain network ictogenicity predicts outcome from epilepsy surgery
,”
Sci. Rep.
6
,
29215
(
2016
).
27.
N.
Sinha
,
J.
Dauwels
,
M.
Kaiser
,
S. S.
Cash
,
M. B.
Westover
,
Y.
Wang
, and
P. N.
Taylor
, “
Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling
,”
Brain
140
,
319
332
(
2016
).
28.
A. N.
Khambhati
,
K. A.
Davis
,
T. H.
Lucas
,
B.
Litt
, and
D. S.
Bassett
, “
Virtual cortical resection reveals push-pull network control preceding seizure evolution
,”
Neuron
91
(
5
),
1170
1182
(
2016
).
29.
V. K.
Jirsa
,
T.
Proix
,
D.
Perdikis
,
M. M.
Woodman
,
H.
Wang
,
C.
Bernard
,
C.
Bénar
,
P.
Chauvel
,
F.
Bartolomei
,
F.
Bartolomei
,
M.
Guye
,
J.
Gonzalez-Martinez
, and
P.
Chauvel
, “
The virtual epileptic patient: Individualized whole-brain models of epilepsy spread
,”
Neuroimage
145
,
377
388
(
2017
).
30.
M. A.
Lopes
,
M. P.
Richardson
,
E.
Abela
,
C.
Rummel
,
K.
Schindler
,
M.
Goodfellow
, and
J. R.
Terry
, “
An optimal strategy for epilepsy surgery: Disruption of the rich-club?
,”
PLoS Comput. Biol.
13
(
8
),
e1005637
(
2017
).
31.
M. V.
Johnston
, “
Clinical disorders of brain plasticity
,”
Brain Dev.
26
(
2
),
73
80
(
2004
).
32.
L.
Junges
,
M. A.
Lopes
,
J. R.
Terry
, and
M.
Goodfellow
, “
The role that choice of model plays in predictions for epilepsy surgery
,”
Sci. Rep.
9
,
7351
(
2019
).
33.
J.
Hebbink
,
H.
Meijer
,
G.
Huiskamp
,
S.
van Gils
, and
F.
Leijten
, “
Phenomenological network models: Lessons for epilepsy surgery
,”
Epilepsia
58
,
e147
e151
(
2017
).
34.
A.
Neiman
, “
Synchronizationlike phenomena in coupled stochastic bistable systems
,”
Phys. Rev. E
49
(
4
),
3484
3487
(
1994
).
35.
R. S.
MacKay
and
J. A.
Sepulchre
, “
Multistability in networks of weakly coupled bistable units
,”
Phys. D Nonlinear Phenom.
82
(
3
),
243
254
(
1995
).
36.
P.
Ashwin
,
J.
Creaser
, and
K.
Tsaneva-Atanasova
, “
Fast and slow domino regimes in transient network dynamics
,”
Phys. Rev. E
96
,
052309
(
2017
).
37.
G.
Petkov
,
M.
Goodfellow
,
M. P.
Richardson
, and
J. R. A.
Terry
, “
Critical role for network structure in seizure onset: A computational modeling approach
,”
Front. Neurol.
5
,
261
(
2014
).
38.
M. A.
Lopes
,
L.
Junges
,
W.
Woldman
,
M.
Goodfellow
, and
J. R.
Terry
, “
The role of excitability and network structure in the emergence of focal and generalized seizures
,”
Front. Neurol.
11
,
74
(
2020
).
39.
M. A.
Lopes
,
S.
Perani
,
S. N.
Yaakub
,
M. P.
Richardson
,
M.
Goodfellow
, and
J. R.
Terry
, “
Revealing epilepsy type using a computational analysis of interictal EEG
,”
Sci. Rep.
9
,
10169
(
2019
).
40.
M. A.
Lopes
,
L.
Junges
,
L.
Tait
,
J. R.
Terry
,
E.
Abela
,
M. P.
Richardson
, and
M.
Goodfellow
, “
Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
,”
Clin. Neurophysiol.
131
(
1
),
225
234
(
2020
).
41.
F.
Rosenow
and
H.
Lüders
, “
Presurgical evaluation of epilepsy
,”
Brain
124
,
1683
1700
(
2001
).
42.
M. J.
Aminoff
,
Aminoff’s Electrodiagnosis in Clinical Neurology
(
Elsevier
,
2012
).
43.
W.
Woldman
,
H.
Schmidt
,
E.
Abela
,
F. A.
Chowdhury
,
A. D.
Pawley
,
S.
Jewell
,
M. P.
Richardson
, and
J. R.
Terry
, “
Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised
,”
Sci. Rep.
10
,
7043
(
2020
).
You do not currently have access to this content.